
Diploma Thesis

Security policies in Nizza on top of

L4.sec

Stefan Kalkowski

September 29, 2006

University of Technology Dresden
Faculty of Computer Science

Institute for System Architecture
Operating Systems Group

Professor: Prof. Dr. rer. nat. Hermann Härtig
Assistant: Dipl.-Inf. Christian Helmuth





Declaration

I declare to have written this work independently and without using unmentioned sources.

Erklärung

Hiermit erkläre ich, dass ich diese Arbeit selbstständig erstellt und keine anderen als die
angegebenen Hilfsmittel benutzt habe.

Dresden, den 29. September 2006

Stefan Kalkowski





Task formulation

Within the scope of the diploma thesis, the management of different security policies on top of
the microkernel L4.sec has to be evaluated.

The resulting work will be part of a Trusted Computing Base software, which is under de-
velopment. Therefore, it has to be compatible to this software. The following problems are of
particularly interest for the exploration: How can a capability-based system be designed, so that
it supports all imaginable security policies? In such a system, how can users and resources be
mapped to names and identities of the platform?

The work has to include a prototypical implementation, as well as an evaluation of the de-
sign, regarding complexity and generality.

Aufgabenstellung

Im Rahmen der Diplomarbeit soll das Management verschiedener Sicherheitspolitiken, auf-
bauend auf dem capability-basierten Mikrokern L4.sec, untersucht werden.

Das Ergebnis der Arbeit soll Teil einer derzeit in der Entwicklung befindlichen Trusted
Computing Base Software sein und muss sich entsprechend in diese einfügen lassen. Wichtige
Fragestellungen für die Untersuchung sind: Welche Möglichkeiten gibt es ein capability-
basiertes System generisch für alle möglichen Sicherheitspolitiken zu gestalten? Wie können
NutzerInnen und Ressourcen in einem solchem System auf Namen bzw. Identitäten der Plat-
tform abbgebildet werden?

Bestandteile der Arbeit sollen außerdem eine prototypische Implementierung und Evalua-
tion des Entwurfs bzgl. Komplexität und Generalität sein.
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1 Introduction

Every day one can read several news about flaws in software, exploits and DoS-attacks, that
were carried out by already infiltrated computer systems. Often, one adepts by these messages,
that a buffer overflow or something similar was the reason for the successful attack, but hardly
ever anybody asks, why a simple programming fault in an user application or system daemon
is sufficient to compromise the whole system. Thereby, its no secret, that the principle of least
privilege, consequently applied in an operating system, would diminish the vulnerability of the
system drastically. But today’s common systems are still far away from fulfilling this principle.

So, what are the reasons for this? One important prerequisite to fulfill the principle of least
privilege are fine-grained Mandatory Access Control mechanisms. But common operating sys-
tems, that get enhanced by such mechanisms, like SELinux for instance, get refused by users,
because they are overextended by its complexity. Of course, it’s not the mechanism or policy
language, which is responsible for the increased complexity, but the whole functionality of the
system controlled by a monolithic reference monitor, that leads to a complex policy. Moreover,
due to its monolithic nature, the TCB of such systems is oversized and therefore error-prone. To
sum up, the monolithic structure leads to a complex, oversized security kernel, which moreover
is difficult to control, as we have only one policy, containing all access control rules.

In contrast to traditional, monolithic operating systems, microkernel based systems promise
to be more robust, to provide a tiny TCB, and to support different policies upon them. More-
over, they can be used to enforce different policies and even policy classes at the same time,
which is essential for multilateral security. The security kernel L4.sec, a new member in the L4
microkernel family, that supports capabilities for controlling IPC, can be used to build systems
upon it, which fulfill the addressed expectations. However, the arrangement of different policy
models, the procedure of capability propagation and revocation, as well as proper abstractions
for identity have not been designed yet for L4.sec. This is the focus of this work.

Goals: In my thesis I want to evaluate, how different policy classes can be mapped into a
multi-server environment with more than one reference monitor. Thereby, generality has highest
priority, that means it should be possible to use every conceivable policy class. I want to show
the advantages of using several reference monitors in a nested configuration, in contrast to
one monolithic reference monitor. Besides, the representation of users in the system, and the
procedure of authentication will be subject of this work.
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1 Introduction

Outline: This document is structured as follows. In section 2 I will introduce you to today’s
variety of security policy models and mechanisms. Additionally, you will find a basic descrip-
tion of the overall architecture Nizza and the security kernel L4.sec, this work is integrated in
respectively based on. Section 3 contains explanations to the access control framework Moni-
tor, I have designed, and the overall framework Bastei, Monitor is a part of. Some implemen-
tation aspects of Monitor, concerning policy data transfer and persistence, service side policy
enforcement, and reference monitor logic, I will discuss in section 4. An evaluation, regarding
generality and complexity of the new framework constructs, as well as open issues, I present in
section 5. At last, I sum up in short the whole work in section 6.
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2 State of the art

A security policy with regard to a computer system defines it’s authorized states, respectively
the allowed operations, that held the system in a secure state. Compared with this, security
mechanisms are mechanisms, that enforce security policies.

Major goals of security engineering are: firstly to analyze the security needs, from that to
develop a security model, as far as possible of formal nature to simplify verification, and at last
to construct mechanisms, that can enforce the policy, respectively a set of policies. Not sur-
prisingly the security policy is closely coupled with it’s security mechanisms. Actually policies
are often implicitly implemented within the security mechanisms, rather than explicitly formu-
lated; although the clear distinction of policy and mechanism is an important condition, to allow
rearrangement of policies, and to support a wide range of distinct policies.

In this chapter, at first we shall examine some explicitly formulated and well-defined classes
of policies; after that we will have a look at some common security mechanisms. At last I will
present the current state of the actual platform, this work is designed for. Of course, hereby the
focus lies on the currently available security mechanisms.

2.1 Policies

There is no general accepted taxonomy with regard to security policy models, but we can dis-
tinguish them, either by means of their primary protection-goals: as confidentiality, integrity,
and availability, or by means of their historical arising, or based on the mechanisms they need.
As the first and the second criteria somehow fits together and facilitates the understanding, we
shall go that way.

Before going into deep and looking at specific security policies, I want to introduce a com-
mon, abstract model, that allows in general the definition of authorized and unauthorized oper-
ations in a system, and therefore can be used to express nearby all policies.

2.1.1 Access Control Matrix

The Access Control Matrix (ACM) was firstly formulated by Lampson[Lam71] and later refined
by Graham and Denning[Den71]. It had a great impact on later researches in the field of com-
puter security.

Lampson abstracted a system as an aggregation of subjects or domains D and objects O
whereby D⊂O. The subjects denote the rows of a matrix, whereas the objects are the columns.
Every item in the matrix is a set of operations, respectively access rights the subject of the item’s
row is allowed to perform, with regard to the object of the item’s column. Figure 2.1 shows an
example of an ACM.

Some special operations allow a subject to change items of the matrix. How this is done,
depends on the policy type. In the original model a special owner-right was introduced, that

3



2 State of the art

Domain1 Domain2 File1 File2 TCP-Port 80
Domain1 *owner *owner write

control *read
*write

Domain2 *owner read *owner read
control *read write

*write

Figure 2.1: Example of an Access Control Matrix

allowed a single subject obtaining that right, to alter every item of the related object’s column.
Additional, a copy-flag (*) can be set for a single right, that indicates the possibility to transfer
that right to another subject.

Apart from these special operations for altering the matrix, in the static case the ACM model
is very general and can be used to express every kind of access control at a specific time. Some
dynamic properties of certain models, like Chinese Wall (see section 2.1.2.5) or Usage Control
(see section 2.1.2.7), cannot be easily expressed by the ACM. Nevertheless it provides a good
abstraction, that helps to imagine some of the following models.

2.1.2 Formal models

The ACM provides the possibility to define access control in a system at a fine-granularly level,
but it doesn’t assists us to define specific policies with regard to special security needs. Fur-
thermore it doesn’t provide a definition of security at all. So it’s fully up to the administrator
of a policy to define a secure system. In the following sections I will introduce certain models,
that provide some more support related to defined security goals. Outgoing from confidentiality
policies, which were the earliest one, we will look at integrity concerned ones, up to hybrid and
more complex models.

2.1.2.1 Bell-LaPadula Model

The main goal of confidentiality policies is to prevent the unauthorized disclosure of infor-
mation. These first formal policy models in computer security, of course derived for military
purposes, focused on the protection of classified information, that’s why they are also known as
military or governmental policies. The best known one is the Bell-LaPadula Model, that formed
the basis for the Trusted Computer System Evaluation Criteria1 (TCSEC).

The Bell-LaPadula Model, first introduced 1973[BL73] and later refined[BL76] by Bell and
LaPadula, assumes, that a system contains subjects, which are the active entities and objects the
passive ones, although an entity can be both, dependent on the context. Objects can be accessed,
either by read or write operations; accordingly every operation where information flows from
object to subject is a read operation and vice versa a write operation2. Each subject and object
1 The TCSEC is often called Orange Book in literature, because of the color of it’s binding
2 Bell and LaPadula actually used four access methods: execute, read, append and write, where execute meant

no flow of information and write a flow in both directions. In this text write means the append operation of the
original text.
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2.1 Policies

has a security level. A security level consists of a classification or clearance (e.g., TOP-SECRET
or UNCLASSIFIED) and a set of formal categories (e.g., BILL or CONTRACT). The classifi-
cations denote the information’s level of protection and are linear ordered, whereas the category
indicates the type of information. The security level of the entities is managed by the system
mechanisms and should be tamper-proof (compare with MAC in section 2.1.3.2).

A subject should only read information from objects, if the subjects clearance is higher or
equal to the objects one, and if the categories of the object forms a subset of the subjects ones.
For example a General with security level: (TOP-SECRET, {NUCLEAR, CRYPTO}) should
be able to read a file with level: (SECRET, {NUCLEAR}).

More formally, we can define an relation dominates : (L,C)× (L,C)→ {true, f alse}, where
L is the set of clearances and C the set of categories and (l1,C1)dominates(l2,C2) is true, if and
only if l1 ≥ l2 and C2 ⊆C1. Based on that, Bell and LaPadula defined the:

• Simple Security Property: A subject with security level S1 can read an object with level
S2 if and only if S1dominatesS2.

This rule prevents direct access of unauthorized subjects. Now, suppose a subject, with read
access on some highly classified data, copies the information to another object, with somehow
lower restrictions. This would be a legal action, according to the access rights, but would conflict
with the intended information flow rules, because now a subject, that formerly couldn’t access
the data, potentially can do so. To prevent this, another property was formulated:

• *-Property:3 A subject with security level S1 can write to an object with level S2 if and
only if S2dominatesS1.

These rules are widely known as no read up and no write down rule. As Bell and LaPadula
have showed[BL76, p.75 et. seq.], the following theorem holds:

• Basic Security Theorem: A system with a secure initial state, that means a state, where
every current access of subjects to objects don’t break the Simple Security- or *-Property,
will only enter secure states, if all possible operations of the system preserve both prop-
erties.

This sounds simple and evident. In practice, it is more difficult to proof, that the chosen mecha-
nism will preserve both properties. Especially, if you consider that in this context read and write
are used in an abstract manner.

The complete model includes another rule, which simply states, additional to the already
mentioned constraints, that individuals may add further restrictions. Bell and LaPadula used
therefore the notion of the ACM (see section 2.1.1), and called it Discretionary Security Prop-
erty (compare with section 2.1.3.1).

One of the earliest systems, that supported the MLS requirements of Bell-LaPadula’s Model
was MULTICS. Better to say one version of MULTICS containing the so called Access Isolation
Mechanism (AIM), that was added by project Guardian[Vle06]. After this early efforts a lot of
different, mostly academic systems followed, that supported MLS (e.g., Scomp, Trusted Mach
or SELinux).

3 This is spoken star-property.
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2.1.2.2 Biba's Model

The Bell-LaPadula Model (see section 2.1.2.1) concentrates solely on confidentiality. Integrity
protection goals are not in the focus of the model. In contrast to that, Biba presented a
model[Bib77], that only considered integrity concerns. Strictly speaking Biba’s Model con-
sists of three different models, whereas one titled Strict Integrity Policy is the fully dual of
Bell and LaPadula’s one.

Biba introduces the notion of integrity levels, which are very similar to the security clearances
of Bell and LaPadula. The levels are ordered and a relation is defined, that determines if a level
dominates another one.

The important difference in comparison to the Bell-LaPadula Model is, that a subject may
read only data from an object, that possesses the same or a higher integrity level, and can only
write data to objects, that have a lower or the same integrity level. So it can be seen as the
inversion of the Simple Security Property and *-Property. But note: integrity levels and security
labels are assigned and managed separately, and have to be distinguished! A third rule states,
that subjects can execute other subjects only, if the integrity level of the second is dominated by
the first one.

Somewhat more formally Biba’s Model can be summarized as follows. Assumptive, a system
consists of a set of subjects S and objects O and a set of integrity levels I. The levels are ordered
and there exist some relation ≥⊆ I× I, that holds, if the first level dominates or is the same as
the second one. Further, a function i : S∪O→ I exists, that returns the integrity level of either
a subject or object. The rules of the Strict Integrity Policy are:

1. s ∈ S can read o ∈ O if and only if i(o)≥ i(s)

2. s ∈ S can write to o ∈ O if and only if i(s)≥ i(o)

3. s1 ∈ S can execute s2 ∈ S if and only if i(s1)≥ i(s2)

By replacing integrity levels with a combination of integrity clearance and category, one obtains
the fully analogue of Bell-LaPadula’s Model. As mentioned earlier, Biba presented two other
models which are very similar. The one is less restrictive and ignores the problem of indirect
modifications; only direct modifications are prevented. Therefore every subject can read every
object, even objects with a lower integrity level. The other model, called Low-Water Mark
Policy, changes the integrity levels of subjects according to the information it accesses. So the
first rule stated above has to be changed to:

1. if s ∈ S reads o ∈ O, then the new integrity level of s is min(i(s), i(o))

whereas min : I× I → I returns the lesser of the two integrity levels.

2.1.2.3 Type Enforcement

Boebert and Kain criticized Biba’s Model (see section 2.1.2.2) as impractical to meet integrity
aspects. As result of their work on the SAT project4, they proposed a framework for integrity
policies[BK85], that don’t have to be hierarchical structured, as with integrity labels.
4 The NCSC as part of the NSA funded the Secure ADA Target project. It’s goal was the development of a secure

computer platform, that meets the A1 requirements of the TCSEC. It builds up on the results of the PSOS project
and was later resumed by the LOCK project.[Say02]
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Their argumentation was, that to implement hierarchical integrity policies, you need a tall
TCB. This is necessary, because a lot of modules have to handle data of different integrity
sensitivity, and therefore the integrity level of data often needs to be raised. A more flexible
labeling and enforcement system is needed, that Boebert and Kain called Type Enforcement5.
They saw their approach as supplement to the TCSEC demands.

As other security models, Type Enforcement characterizes a system as composition of sub-
jects and objects. The subjects are grouped in domains, whereas the objects have associated
types. The access rights, that domains possess with regard to types, are arranged in a Domain
Definition Table (DDT), that is similar to the ACM (compare to section 2.1.1). In addition, there
exists a Domain Transition Table (DTT), that determines which domains can execute which
other domains. Type Enforcement is structured like the ACM, but achieves a drastic reduction
of needed rules and table space, because subjects are grouped to domains and objects to types.
Needless to say, that you can use Type Enforcement not only for integrity concerns, but also for
confidentiality ones. In contrast to the Bell-LaPadula (see section 2.1.2.1) and Biba Model (see
section 2.1.2.2) this model doesn’t provide a simple solution to define security. While being
capable to express sophisticated policies, a policy designer risks to construct flawed policies.

In later efforts, Badger and associates[BSS+95a] applied this approach to UNIX-like sys-
tems and named it Domain and Type Enforcement (DTE). One variant of Type Enforcement is
implemented in SELinux[Nat06].

2.1.2.4 Clark-Wilson Integrity Model

Clark and Wilson[CW87] investigated the commercial needs, in contrast to the so far focused
military ones and determined, that integrity should be the main protection goal. Therefore, they
stated two mechanisms, which are desired: separation of duty and well-formed transactions.
The first one means, that operations should be organized into subparts and be only accessible
by different people to prevent fraud. For example, in many companies the responsibility of
ordering and paying is often divided into different sections, that’s why fraud is less probable.
Of course, this aim could also be achieved with the formerly known Biba Model (see section
2.1.2.2) by choosing proper integrity levels and categories.

The well-formed transaction was in a sense a new approach, that implied the notion of con-
sistent states and checks. Such a transaction is a sequence of operations, that has to preserve
consistency of the system. A very simple example would be the transfer of money from one
account to another within a bank. A single operation, for instance if the sum is added on the
target-account, will bring the bank’s accounting in an inconsistent state, but in conjunction with
a subtraction from the originator-account, it forms a well-transformed transaction.

The main point of the model is, that only certain transactions can touch certain data sets or
objects, and users are constrained in their access to these transactions.

More formalized, the model of Clark and Wilson requires, that data, whose integrity has to be
protected, must be labeled by the system. These data items are called Constrained Data Items
(CDI); other data is called UDI. An integrity policy describes two different types of procedures:
Integrity Verification Procedures (IVP) and Transformation Procedures (TP). An IVP is needed
to check consistency of the CDIs at the time it is executed, whereby the TPs are the well-formed
transactions. The following rules have to be fulfilled:
5 Meanwhile Type Enforcement is patented by the Secure Computing Corporation.
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• C1 (Certification): All IVPs must properly ensure, that all CDIs are in a valid state at
the time the IVP is run.

• C2: All TPs must be certified to be valid. That means, they must take a CDI into a valid
final state, given that it is in a valid state to begin with. Further on, it has to be defined,
which CDIs a TP is designed for.

• E1 (Enforcement): The system must ensure, that only TPs, certified to run on a CDI,
manipulate that CDI.

• E2: The system must associate a user with the TPs, it is allowed to run. Furthermore,
it has to maintain which CDIs a specific TP may access on behalf of that user. Such a
relation forms a triple: (user, TP, {CDI1, ...}). The system has to enforce, that access by
users to CDIs through a TP follows the defined relations.

• C3: The defined relations must be certified to meet the separation of duty requirements.

• E3: The system must authenticate the identity of each user attempting to execute a TP.

• C4: All TPs must be certified to write to an append-only CDI all information neccessary
to reconstruct it’s operations.

• C5: Any TP, that takes an UDI as input value, must be certified to perform only valid or
no transformations, for all possible values of the UDI. The transformation either rejects
the UDI or transforms it into a CDI.

• E4: Only the certifier of an entity may change the list of the entities, it is associated
with (e.g., a TP associated with CDIs). The certifier of an entity, must not have execute
permissions with respect to it.

The first three rules ensure consistency of the CDIs. Rule E2, C3 and E3 provide mechanisms to
fulfil the principle of separation of duty. Certification rule 4 defines how illegitimate transactions
can be reverted. The remarkable feature of the Clark-Wilson Model is, that it defines how
entities can be upgraded (compare with rule C5). A feature, that Biba’s Model (see section
2.1.2.2) misses. In Biba’s Model a security administrator would have to certify each unclassified
data, that gets part of the system, which seems to be very unrealistic. The last rule is another
example for the principle of separation of duty, and prevents a user from adding TPs, which can
later be executed by him or her.

An implementation approach can be found in the thesis of Karger[Kar88]. He shows how to
establish the model on top of SCAP - the secure Cambridge capability system.

2.1.2.5 Chinese Wall Model

The Chinese Wall Model was introduced by Brewer and Nash[BN] and is derived from the legal
demands of the UK’s Stock Exchange. Clearly, in such environments analysts, that work on
companies data, have to be prevented from accessing data of competitive companies. Otherwise,
insider information could be used for fraud.
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Brewer and Nash proposed a three level hierarchical organization of data. The lowest level
represents a single object. Objects related to a single company are grouped together to a com-
pany dataset. The highest level consists of conflict of interests class, which are sets of com-
petitive company datasets. Figure 2.2 shows some exemplary dataset.

EnergySoftware

conflict of interests class

Novell
Sun

Apple

company dataset

BP

Gazprom

Figure 2.2: Organization of the data in the Chinese Wall Model.

The Chinese Wall Model assumes, in addition to the already mentioned objects, a set of
subjects, whereby a subject is a clearly defined user6. It defines the following rule in analogy to
the Bell-LaPadula’s Model (see section 2.1.2.1):

• Simple Security Rule: Access to an object is only granted to a subject, if one of the
following is true:

1. The requested object is in the same company dataset as an object already accessed
by that subject.

2. The requested object belongs to an entirely different conflict of interest class than
all objects previously accessed by that subject.

3. The requested object is a sanitized one.

Hereby, sanitized means, that all sensitive information is removed from the object. To pre-
vent indirect flow of information, Brewer and Nash defined a second rule analogue to Bell and
LaPadula:

• *-Property: Write-access to an object is only granted to a subject, if the following is true:

6 In contrast to previous definitions, where subject and process were interchangeably used, it is necessary for the
following description, that we think of a subject as a single user
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1. The access is permitted by the Simple Security Rule.

2. No object can be read by the subject, that belongs to a different company dataset
than the requested one, unless the other company dataset contains only sanitized
objects.

The really important point of view with regard to the Chinese Wall Model is, that the decision
to grant or deny access is based on the access history of the subject. That part of the model can’t
be emulated by previously introduced ones. On the other hand, the Chinese Wall Model cannot
emulate the Clark-Wilson Integrity Model as it has no equivalent to the verification rules in that
model. As Brewer and Nash showed[BN], the two models are consistent and therefore can be
used in conjunction.

2.1.2.6 Role-Based Access Control

The notion of Role-Based Access Control (RBAC) was firstly named by Ferraiolo and
Kuhn[FK92]. They argued, that in companies access rights are mostly linked rather with jobs
than with certain users. Therefore, they proposed an abstraction, where subjects are associated
with roles, and access rights are assigned to that roles.

In RBAC a subject s has one or more roles, it is authorized for. The function authorized(s)
returns that set of roles. The subject has one active role at a given time, which we will denote
with active(s). A role r is authorized to perform one or more transactions, namely trans(r). In
RBAC the following rules apply:

1. Role assignment: ∀s ∈ S,s can execute any transaction only if active(s) is not empty.

2. Role authorization: ∀s ∈ S,active(s)⊂ authorized(s).

3. Transaction authorization: ∀s ∈ S, ∀t ∈ T , s can execute t only if t ∈ trans(active(s)).

An important property of RBAC is that rights, needed for a job, can easily be assigned to
users, that are new, or which terms of reference changed. This can be done by assigning prede-
fined roles to them. One further aspect of the model is the composition of roles to new ones. An
example can be seen in figure 2.3.

RBAC has been adopted as a standard by ANSI. There exist several implementations and
variations of it, for example in Microsoft’s .NET framework. In the area of operating systems,
Solaris OS7 provide RBAC[Cha03], another example is SELinux[Nat06].

By combining the notions of RBAC and Type Enforcement, one obtains an anymore flexible
model. We can simply take the RBAC model, and additionally associate objects with types, or
even organize them in a type hierarchy, analogue to the role hierarchy. Such a combination can
be found in SELinux[Nat06].

2.1.2.7 Usage Control

Usage CONtrol (UCON) is a relatively new approach, that tries do combine prior models on
a high abstraction level. It is mostly related to DRM endeavors, because the authors explicitly

7 Starting with version-number 8.
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Figure 2.3: An example of a role hierarchy.

covered that field. Nevertheless, it generalizes certain models and provides lesser a concrete
policy class, but rather an abstract description of what is needed to formulate sophisticated
policies. Therefore, it is of interest for this work and will be introduced shortly.

The authors of UCON, Park and Sandhu describe it[SP02b][SP02a] as a mixture of Trust
Management, DRM, ORCON (compare with section 2.1.3.3) and traditional access control.
The UCON model abstracts a system, as former models did, to subjects, objects, and rights.
Additional, it obtains authorization rules, conditions, and obligations. Figure 2.4 illustrates the
model.

Rights are described as privileges, that subjects hold on objects, so it can be thought of as
capabilities (see section 2.2.1.2). The authorization rules are requirements, that should be sat-
isfied before rights are granted. They can be thought of as traditional access control rules (e.g.,
the label of the subject has to dominate the object’s label for read access). In addition, the rules
contain obligation-related rules, meaning the control of the fulfillment of obligations, a subject
agreed on. An obligation might be an auditing function, performed while a subject modifies
an object. While authorization rules are checked before access is granted, including obligation-
agreements, the fulfillment of obligations has to be traced after access was established.

Further rights related components are conditions. One can distinguish stateless and state-
dependent conditions. An example for a state-dependent condition might be the previous access
to a company’s dataset. That condition denies access to other datasets, as in the Chinese Wall
Model (see section 2.1.2.5). A given time period, in which access is granted solely, is an exam-
ple of a stateless condition.

While covering a lot of aspects of former models, like access-history tracking or auditing,
UCON doesn’t provide a detailed framework how the rules, obligations, and conditions can be
expressed, not to mention a definition of how certain security goals can be achieved. However, it
is a powerful, abstract model, that covers some aspects, that are not covered by other framework-
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Figure 2.4: The UCON model.

like models, as ACM (see section 2.1.1), Type Enforcement (see section 2.1.2.3) or RBAC (see
section 2.1.2.6).

2.1.3 Types of Access Control

Beside additional mechanisms like auditing8, the main tool to enforce the different security
policies is to confine the flow of information by controlling access, subjects have to objects. The
three different forms, that are needed by the previously presented policies, will be summarized
and sharpened in the next three sections.

2.1.3.1 Discretionary Access Control

The term Discretionary Access Control (DAC) was introduced by the TCSEC[Cen83] and
is derived from the Discretionary Security Property of the Bell-LaPadula Model (see section
2.1.2.1). All systems with evaluation class from C up to A support this feature. DAC is defined
as an enforcement mechanism, provided by the TCB9, that allows named users to specify and
control sharing of named objects. In particular, this means, that a subject, that possesses certain
permissions, is capable of passing that permissions away to other objects.

Typical examples for DAC are legacy file-systems as found in UNIX-like systems. These
allow users to control access to files based on the identity of the requesting subject, that can be
distinguished by user- or group-ID.

8 Strictly speaking, auditing can also be reduced back to information flow and access control.
9 TCB is used with varying semantic. In this document we use the definition of the TCSEC. According to that, the

TCB is the “totality of protection mechanisms – including hardware, firmware and software – the combination of
which is responsible for enforcing a security policy”[Cen83, p.115]
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2.1.3.2 Mandatory Access Control

As same as DAC the definition of Mandatory Access Control (MAC) goes back to the TCSEC,
and the notion is derived from the Simple Security Property and *-Property of the Bell-LaPadula
Model (see section 2.1.2.1). Systems, that shall be evaluated as class B or A, have to provide
MAC mechanisms. Originally, it was defined as mechanism of the TCB, that on the one hand
labels every subject and object, according to the form of label presented by Bell and LaPadula,
and on the other hand restricts all access methods in such a way, that the Simple Security
Property and *-Property won’t be hurt. The important property of MAC is hereby, that it can’t
be broken by DAC mechanisms.

Today, the term is almost used with a widened meaning, that is: all system mechanisms,
that control access to objects and cannot be altered by an individual user, provide MAC[Bis03,
p.103].

Normally, MAC is used in combination with DAC. Of course, hereby MAC rules have to
dominate the other ones. Accordingly, the existence of DAC helps the user to add further
restrictions, but not to grant access that is otherwise forbidden.

2.1.3.3 Originator Controlled Access Control

ORiginator CONtrolled Access Control (ORCON), first introduced by Graubart[Gra89], is a
mixture of DAC (see section 2.1.3.1) and MAC (see section 2.1.3.2). Like in MAC, the access
control relationship between subject and object cannot be altered by the owner of the object and
as a consequence of this, if an object is copied, it’s imposed restrictions have to be copied too.
In contrast to MAC, there aren’t centralized rules, that handle access to entities. The control
of who may access an object is at the complete discretion of it’s originator. Originator hereby
means originator of the information, that lies in the object and has to be distinguished from the
owner of an object.

ORCON defines the following rules:

1. The creator (originator) of an object is the only subject that can alter the access control
restrictions of that object on a per-subject basis.

2. When an object is copied, the access control restrictions of the source are bound to the
target of the copy.

The first rule is somehow a DAC rule, whereas the second is a MAC rule. A problem arises
due to the second rule. Strictly speaking, every object o1 a subject newly creates, while it has
access to another originator-controlled object o2, has to be controlled in the same fashion like
o2. Graubart therefore proposed Propagated Access Control Lists (PACL), which are associated
with originator-controlled objects.

A PACL similar to traditional ACLs (see section 2.2.1.1) contains subjects, that obtain rights
to access the concerning object. When a subject accesses an ORCON-object, the PACL binds
to that subject. If that subject creates an object, while associated with some PACLs, these
PACLs get associated with the newly created object too. In this respect, PACLs label the flow
of information in the system. Whereby Graubart restricts the labeling to newly created objects
only, already existing objects, information could flow in, are neglected by him.
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Remarkable in ORCON surely is the decentralized approach coupled with MAC mechanisms.
Similar, extended approaches are followed by the Decentralized Label Model[ML97] and the
AsbestOS[EKV+05].

2.1.4 Security policy languages

When security policies aren’t implicitly implemented in the security mechanisms of a sys-
tem, but explicitly formulated, a form of representation is needed. There exist low-level lan-
guages, closely coupled to certain security kernel implementations and high-level languages,
that can express policy classes. For example, Badger and associates presented a high-level
language[BSS+95b] with respect to their Type Enforcement (see section 2.1.2.3) approach for
UNIX-like systems.

Additionally, companies and research institutions made efforts to develop more general lan-
guages, that are able to express as possible very different policy types. The eXtended Access
Control Markup Language (XACML)[OAS06] is one result of these efforts. It is an XML lan-
guage, that can be used, both to formulate sophisticated access control rules, and to construct
and analyze requests and responses. XACML is standardized by the OASIS.

But instead of considering all available security policy languages now, we shall have a look
at the fundamental aspects of them. An overview of language requirements can be found among
others in the paper of Vimercati, Samarati and Jajodia[VSJ]. With the following, I will present
only some short points:

• There is a need to denote entities, whether distinguished by subjects and objects or not.
Furthermore a language must be able to express relations between them, which are the
controlled operations.

• A flexible and also simple language should provide the possibility to structure subjects,
objects and even operations hierarchical, to minimize the needful rules.

• It should be possible to associate logical statements (conditions) with triples of the form
(subject, object, relation), that have to be evaluated, when an access decision is made.

• The language should provide the possibility to define default rules. With other words, if
no rule is available related to a specific request, access will be allowed (open policy) or
denied (closed policy)

• Another main aspect in policy languages is: how can you express rules to resolve con-
flicting rules? For example, you can decide, that more general rules have to dominate
specific ones or the other way around.

2.2 Mechanisms

The required security mechanisms, that derive from the policies and models, described in the
previous sections, are the following. There is a need for an access control mechanism, that
provides the different access control strategies like DAC, MAC and ORCON. For that, support
for labels of different system objects is needed. Both, access control and labels are desired
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with flexible granularity. Fine-grained access control is truly the foundation for flexible policy
support, as stated by Spencer and associates[SSL+99]. Imagine, one is able to control every
single operation, that is done by the system, then one obtains the ability to enforce every security
policy. Of course, this is unrealistic and even not wanted. We only want to control the operations
or accesses defined by a given policy.

Realizing access control involves implementing propagation and revocation of rights. The
control of rights propagation and revocation can be a difficult aspect in modeling an operating
system.

One thing beside access control, that is often ignored, is the control of resource usage. Fur-
thermore the question, how identity is brought into system, is still open. We will discuss the
state of the art of all these aspects in the following sections.

2.2.1 Mechanisms for access control

Basis for the control of access in computer systems is to prevent or allow processes to touch
certain locations in memory. On the lowest level, this is normally done by a combination of
protection rings, segmentation and/or paging. For example, a program, that is associated with
the lowest used ring, is therewith in the position to organize some distinct address spaces, used
by programs running on higher rings, and to provide some kind of controlled sharing of infor-
mation between these processes.

Such an example of a combination of hardware and software is called security kernel.
That is an implementation of the reference monitor concept, an idea that was introduced by
Anderson[And72]. A reference monitor mediates all accesses of objects by subjects. That
means in the previous case, it mediates every memory access.

An interesting aspect in the implementation of a reference monitor is, how the access rights
are arranged respectively located. One possibility is to hold all access rights in a table analogue
to the ACM (see section 2.1.1). But such a table would waste a lot of memory needlessly. Two
different approaches exist to overcome this space problem. One can, whether associate every
object with a list of subjects and their particular access rights, or the other way round, bind a
list of objects and the corresponding rights to every subject. Both solutions eliminate empty
items of the ACM. The first implementation approach is called Access Control Lists (ACL), the
second capabilities or capability lists.

The interpretation of the terms ACL and capability is controversial. Often they are erro-
neously associated with other concepts, like DAC and MAC. Before comparing both concepts
with each other, we shall investigate some examples, whereby focus lies on capability systems,
as the security kernel, this diploma thesis bases on, provides capabilities as primary protection
mechanism.

2.2.1.1 Access control lists

ACLs often get equated with the traditional POSIX file system object permission model, where
every file is associated with a bit-field, that indicates for owner, group and others, whether they
have read, write or execute permission on that file. This is is clearly an abbreviation of ACLs,
that can handle much more fine-grained access control.
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For instance, the memory protection model of MULTICS[BCD69][Sal74] included some
kind of ACLs, as one of the first systems at all. In MULTICS segments are protected by an
ACL that contains all principals that are allowed to access that segment. Access can be defined
as read, write, execute and append or a combination of that three rights. Every process has an
identifier, that consists of a user, project, and compartment field. So this combination provides
the facility of fine-grained memory sharing between different processes in the system by using
ACLs. The single identifier fields can be used in conjunction with a wild-card (*) to limit the
number of needed entries in an ACL.10

A more recent example is the FLASK[SSL+99] architecture, that reaches access controls by a
combination of object managers (e.g., a file-server), which enforce access control and separated
security servers, that decide if access is granted or not.11 Because decision is made alone by
the security server, it must know the requesting subject and the target object and has to handle
some kind of ACM or something similar. To enhance performance, the access control decisions
are cached by an Access Vector Cache module (AVC) within the object manager. Because the
AVC is located at the object and access decision is made on basis of it, it can be seen as a kind
of ACL.

As can be seen ACL models differ with regard to the objects they protect, the subject’s repre-
sentation they contain, and the operations, that can be protected. So UNIX file-system strictly
abbreviates what subjects can be differenced, namely owner, owner-group, and others. In most
today’s operating systems access control is bounded to file-systems only, beside primary mem-
ory protection. Therefore in practice ACLs are often adjusted solely to directories and files and
only protect read-, write- or execute- operations.

A clear different approach, that was already described in section 2.1.3.3, are propagated ACLs
or short PACLs. Hereby the ACL is more associated with the information in an object instead
of the object itself.

2.2.1.2 Capability lists

Capabilities, first introduced by Dennis, locate “by means of a pointer some computing object,
and indicates the actions that the computation may perform with respect to that object.”[DH66,
p.145] In other words they are a composition of reference and authority. In comparison with
ACLs, capabilities are often described as rows of an access control matrix.

In practice they are an unique string of bits, owned and unforgeable by some subject. If that
subject wants to access the object referenced by the capability, it is proven by means of the
capability, if that kind of access is allowed. Capabilities suit well to the object-oriented world.
There are in general two possibilities to held them unforgeable. One is to use some protected
memory segment in the process’s domain, that can be modified only by the TCB. The other
approach uses cryptography to make it difficult to guess a correct capability. This is particularly
interesting for distributed systems. The Amoeba system for instance uses 128-bit capabilities,

10 Strictly speaking, the segment model of MULTICS includes furthermore a ring-number pair, that is associated
with each segment. If a procedure, currently running in ring r, wants to access a segment with the ring-number
pair (r1,r2), then full access is granted, as long as r ≤ r1; when r1 ≤ r ≤ r2 then only read and execute are
permitted; if r2 ≤ r all access is denied. Here the ring-number pair can be seen as an additional ACL.

11 The separation of policy and enforcement is an important design principle, that stood at the head in the FLASK
project. This principle is needful to guarantee real flexibility in policy support.
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where the last 48 bits are randomly selected at creation time, and validity of that bits is checked
at access time by the server, that created the capability.

A lot of different capability models were developed in the last four decades. In the original
model it is necessary and sufficient to possess a capability, to perform all operations, which
that capability allows. Furthermore, capabilities can be copied unrestricted between different
subjects, as far as they own the capabilities to transfer data between each other. Such a model
fits perfectly the DAC requirements, but if some MAC has to be established problems arise,
because propagation of authority cannot be limited. In other words, that model isn’t able to
solve the confinement problem[Lam73].

Several adaptations were made to the original model to overcome this weakness. Kain and
Landwehr proposed a taxonomy[KL86] for capability-based systems including two possible
solutions. One is to assign at creation time each capability list the security level of the subject,
that list is assigned to, and to set the proper access rights, related to the referred object’s security
level. Every time a capability gets copied it’s permissions are restricted on the basis of the
target’s security label and the security label of the object, that capability refers to. A similar
approach is followed by the ICAP system[Gon89], whereby here not only a security level is
assigned to a capability list, respectively a segment the capabilities are stored in, but full identity
is coded into each single capability. This approach might be useful for distributed systems.

The second solution is to copy capabilities freely, and to determine the correct access rights
not before access is prepared. Karger chose that way in SCAP[Kar88]. To reduce the policy
decision overhead here, access decisions have to be cached. Outgoing from the presumption,
that access to an object occurs more often than passing it’s reference away, the first variant
of control at propagation time promises a better performance. Moreover, we can use special
capabilities solely for capability passing; that don’t need additional checks. These special capa-
bilities can be used between processes of one security level to reduce decision overhead.

Another problem in capability-based systems is the revocation12 of a formerly propagated
capability, for instance when the related object changes it’s security level. One possibility is
to pass through all processes and check their capability lists, which self-evidently implicates
a great performance overhead. An alternative approach uses indirection, for example a global
table, where the objects locations are stored in and indexed by capabilities. If the corresponding
index of an object is changed, no previously granted capability can access that object anymore.
Shapiro and associates[SSF99] intended to use indirection as revocation mechanism in EROS,
whereby here indirection can be done by inserting indirection objects and by destroying such
an object if access to the real object gets revoked.

A delayed form of revocation can be reached by including an expire-field in the capability,
that determines how long a capability is valid. Such an approach is particularly interesting in
distributed systems, where centrally administrated revocation is more difficult.

In MULTICS immediate revocation is reached by using back pointers[Kar89][BCD69][Sal74].
These pointers refer from the segments (compare to section 2.2.1.1) to segment descriptors,
that are stored local in the process’s descriptor segment. Segment descriptors not only support
the translation of names to segment numbers, but also cache the access rights of the concerning
process with respect to the segment. As a combination of reference and access rights, they can

12 When speaking about revocation, I mean particularly immediate revocation.
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be seen as a kind of capabilities. When an segment’s ACL is changed, the back pointers are
used to invalidate the corresponding segment descriptors.

2.2.1.3 Comparison between ACLs and capabilities

Now, we will discuss strengths and weaknesses of ACLs and capability lists in comparison. If
you want to know what objects can be accessed by a given subject, of course capabilities are
more helpful. This is is the case for instance, if a subject gets removed from the system. In
ACL-based systems all objects have to be passed to lookup their ACLs and possibly remove the
subject from it. The other way around, if you want to know what subjects can access a given
object, ACLs fit best. For example, the security clearance of an object has to be changed and
for the particular subjects, that might have access to the object, the rights have to be revalidated.
In capability systems this might be a difficult task (see section 2.2.1.2).

These obvious differences are results of the direction of the references between subjects and
objects, that can also be seen in Figure 2.5.
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Figure 2.5: Comparison of reference direction in ACL and capability model.

The direction of reference is the main point, as Miller, Yee and Shapiro recognized[MYS03].
Because access goes off from subject to object, clearly a name-space, containing object refer-
ences, is needed on the subject’s side. In addition, an ACL needs a name-space in which to refer
to subjects to fulfil it’s task. This implies additional overhead, when using fine-grained sub-
ject identities. In the ACL model maintaining consistency is difficult, if subjects are frequently
appearing and disappearing. To circumvent the overhead of either big ACLs or ever modify-
ing of ACLs, typically less fine-grained subjects are used. For instance only the user-name is
applied to all processes, that execute on behalf of a user. This tactic conflicts with the principle
of least privilege. In contrast, capability-based systems doesn’t need a name-space of subject
references on behalf of the object.

Another strength of capabilities is there property, that designation on the subject’s side
is always coupled with authority. This implies the ability to solve the confused deputy
problem[Har88].
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2.2.2 Resource control

Until now, we only focused protection in relation to confidentiality and integrity. The question
arises, whether availability concerns can be expressed with the so far described models or not,
and if the formerly stated mechanisms are sufficient for that. Obviously, models like the ACM
are not adequate to express rules for preventing denial-of-service. There has been little efforts
to develop corresponding frameworks or policy classes. One attempt was made by Millen with
his Resource Allocation Model[Mil92].

He stated the necessity of a resource monitor, analogue to the reference monitor notion (see
section 2.2.1). The resource monitor has to be invoked, every time a shared resource has to be
allocated. Furthermore, he noticed, that revocation of resources must be possible, and all access
has to be bound to time. The resource monitor is somehow joined with the TCB’s reference
monitor, because both are invoked while resource access.

Without going into deep, one can summarize, that the need for fine-grained access control to
all shared resources of the system, as well as the possibility of revocation of formerly granted
access, goes together with the needs, that arise out of the confidentiality and integrity protection
goals. Apart from that, the logic of such a general resource monitor is much more complex,
including among others scheduling and logic to detect and solve deadlocks.

2.2.3 Identity and authentication

We have dealt a lot with subject’s identities so far, but didn’t considered how identity is brought
into the system. This will be done now. The process of assigning identity to a subject is called
authentication. Therefore a principal has to provide some knowledge, possession or properties.
This can be a password, an electronic badge, or biometric properties. I don’t want to present the
different known authentication mechanisms now; it is out of the scope of my work. We shall
only examine some aspects often ignored.

At first, in most systems a user has to authenticate him- or herself only one time, till he or she
explicitly logs out, or gets logged out by the system, due to inactivity. But some authentication
techniques can enduringly proof identity, for instance by analyzing key strokes. Another point
is, that normally authentication mechanisms are defined implicitly by the system mechanisms
and hold for all users indifferently, but like other security mechanisms it is needful, that the
authentication policy is distinct from it’s mechanisms and can be expressed on a per-principal
basis.

Another important issue is, when a user or remote process is going to provide authen-
tication information, the principal has to trust the authentication mechanism and therefore
the underlying system. Trust in the running system can be established by authenticated
booting[Gro91][Kau04]. Furthermore, to prevent tampering of a login screen or eavesdropping
of keyboard events, a minimal, trusted window manager, like for instance nitpicker[NFCH05],
is needed.

Beside the user, there are other entities providing authentication information. Every process,
that isn’t executed on behalf of some user, potentially needs to be associated with some form
of security label, for example a domain in Type Enforcement (see section 2.1.2.3). Therefore,
something like a secure file-system is needed, that protects integrity of stored programs, for
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instance by using hash values. Of course, hereby trusted computing techniques are needed to
hold keys and hash values.

2.3 The security architecture - Nizza

The overall architecture, this work is designed for, is called Nizza. The most impor-
tant design principle of Nizza is isolating all security sensitive code to obtain a minimal
TCB[Här02][HHF+05]. To achieve that goal, Nizza uses a multiserver-system approach. Upon
a microkernel are running several trusted core components, for instance servers, that manage
physical memory, devices, graphical user interface and so on. You can see the architecture in
figure 2.6.
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Figure 2.6: The Nizza architecture.

The core components are running in distinct address-spaces and have small interfaces. To
achieve minimal size of components, you can use technologies like trusted wrappers, that means
reusing untrusted components by protecting information on higher protocol layers. For example,
imagine you want to save sensitive information to disk. Instead of constructing a complete, new
file-system server, you can use an existing file-system implementation, as long as your infor-
mation gets encrypted and hashed by a trusted wrapper, before it gets committed. A detailed
explanation, how trusted wrappers help to reduce the TCB, can be found here[HPHS04].

For running legacy applications, for instance used in conjunction with trusted wrappers,
legacy operating systems are integrated in Nizza by para-virtualization. This means the oper-
ating systems gets modified to accept the underlying abstractions (the core components), as its
actual machine. This strategy allows you to use a variety of existing applications, without the
need to create a complex ABI-compatible environment. At this time, there exist L4Linux as
legacy operating system in the current implementation of Nizza. As the name suggests L4Linux
is modified to fit the L4 microkernel interface. Therefore, it is not surprising, that an L4 micro-
kernel is used as security kernel in the current Nizza implementation.

We shall now have a look at a new L4 microkernel, especially redesigned to better fit security
issues.
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2.3 The security architecture - Nizza

2.3.1 The security kernel - L4.sec

The L4 microkernel family has in common, that the kernel doesn’t implement any policies and
only provides a few abstractions needed to achieve separation of programs upon it. It provides
distinct virtual address spaces, also denoted as tasks, in which threads execute user-level code.
Therewith, threads can communicate with each other, a third abstraction beside tasks and threads
is implemented by the kernel, namely Inter Process Communication (IPC).

Currently available L4 specifications, like L4v2[Lie96], L4X0[Lie99] and L4X2[DLSU04],
don’t provide mechanisms to effectively restrict IPC between two processes. Therefore, the
operating system research group of the TU-Dresden concurrently developed an extended L4
specification L4.sec, that is still in progress. It’s current experimental implementation[Kau05]
is called Florence. The main new features of L4.sec are endpoints and capabilities. Endpoints
are associated with tasks. IPC is done between endpoints, not directly between two threads. That
implies: Various threads can listen to an endpoint or send to it within a task, which simplifies
the construction of multi-thread servers.

The additional new feature, the capability is a reference to a kernel object with assigned
permissions. Kernel objects, referenced by capabilities are endpoints, tasks, threads, kernel-
memory objects, and CPU-reservations. Capability IDs are task local and build an own name-
space, beside the memory name-space. The most interesting capabilities for our meditations are
endpoint capabilities, because controlling them means: control of IPC. An endpoint capability
has the following permissions: send, receive, and map. The map permission is used to allow or
deny the propagation of pages and capabilities over that endpoint. Moreover, a badge is attached
to each endpoint capability, that is transfered to the receiver, each time that capability is used
for sending. The interpretation of the badge can be used for different purposes and it’s up to the
receiver to interpret it. Because badge transfer is enforced by the kernel and is tamper-proof, it
can be used to represent the sender’s identity or permissions.

An experimental feature of L4.sec is directive unmap, that supports selective revocation. By
specifying a mask you can unmap those mappings, whose badge corresponds to the mask.

2.3.2 Related work

Projects that are closest to Nizza are Perseus[PRS+01] and Microsoft’s NGSCB (previously
known as Palladium). As far as i know, there exists no further descriptions how these projects
integrate different security policies in a flexible fashion.

Another project, that explicitly determined how to achieve policy flexibility, is
FLASK[SSL+99] (see section 2.2.1.1). The original FLASK architecture was implemented
by using a Mach-based microkernel named Fluke. Later the NSA integrated FLASK in
Linux[Nat06] and created SELinux. In contrast to most other operating systems (except for
MULTICS) the FLASK people realized the importance of permission revocation. A short-
coming of the design is the central point of the security server, that determines every security
decision. To support dynamically a wide range of policies, that component might become to
great in size.

EROS[Sha99] is another example of a capability system built upon a microkernel. It has
inspired the work on the L4.sec specification a lot. It’s successor project is the Coyotos micro-
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kernel, which is in fact very similar to L4.sec. Nevertheless, the overall system architecture,
that puts different security policy in practice, is missing here.
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In this chapter I will introduce you to a new operating system architecture called Bastei, that
was developed in parallel to this work1. To be more illustrative, we will study the new features
of the architecture on the basis of a real-world scenario. Derived from the needs of the scenario
and the existing knowledge in the field of security policies and mechanisms (compare to section
2), I have designed an access control framework, that can be used within Bastei, which will be
presented at the end of this chapter.

3.1 Bastei Architecture

On the one hand, Bastei2 is the attempt of a complete clean re-design of the L4Env
components[l4e03] and their interfaces, which became more and more interweaved. On the
other hand, it was necessary to integrate new access control primitives like that of L4.sec (see
section 2.3.1) in the user-level components.

The main design characteristic of Bastei, beside the general principles of Nizza3 (see section
2.3), is a tree structure. Hereby, every node is a task. A node can create a new task, which will be
its child4. A parent node or short parent is the only communication partner of a newly created
task. Therefore, it is a kind of reference monitor for all access requests, that are related to their
children. Every request of a node A to other nodes, that aren’t children of A, are mediated by its
parent. Hereby, the parent additionally acts as a name service for its children.

To access resources, a node asks its parent to initialize a session to a named service. In
fact, a session abstracts from the process of requesting a capability, that is associated with an
communication endpoint to the service. Dependent on the child’s identity and the requested
service, the parent delegates the request, either to its own parent, it constructs a capability to
a service of its own, or it invokes one of its other children, that implements that service. In
any case, the parent delegates the resulting capability to the client. The procedure of a session
request is shown in figure 3.1.

Of course, to establish sessions to other children, the parent has to know of their services,
therefore children might “announce” them at their parents. While announcing a service, the
parent gets a so called root-capability, which allows to request for new session capabilities,

1 I present Bastei in this chapter, although it is not designed by me, but by different people of the operating system
research group of the University of Technology Dresden. Nevertheless currently it is not ’state of the art’, but of
highly experimental nature. Both working processes (Bastei and this thesis) started nearly the same time and were
closely coupled.

2 Bastei is the German word for a kind of bastion. It is derived from the Italian word bastia. Beside that, it denotes
a touristic sight in Saxony.

3 Lately, Bastei is a part respectively further development of the Nizza architecture
4 Please, do not confuse children and parents with their UNIX analogues.
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Figure 3.1: Service request of a child.

that reference that service. You can see the whole process of service announcement in figure
3.2.

After a successful session establishment, a child can use the resulting capability directly to
reference the requested service, without a further indirection over its parent. On the service’s
side at the time of session establishment, a Server_object is created, that is addressed by
the newly constructed capability. Every time the capability gets invoked, the Server_object

will be invoked on the service’s side. Of course, it must provide the service’s interface. One
example of a Server_object is the child representative on the parent side, which is simply
called Child. This object gets invoked, every time a child uses its parent capability, for instance
to request further sessions. Child implements the parent interface, which is defined as follows5:

interface Parent {

exit([in] int exit_value);

announce([in] String service_name,

[in] Capability service_root);

5 This IDL-like notation is used to derive a client- and a server-side interface from it. Thereby, if a client invokes a
function, it transfers by means of IPC all arguments, that are marked with the [in] tag, to server. The arguments,
that are marked with the [out] tag, are transfered back to client, when the server responds.
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Figure 3.2: Announcement of a service by a child.

session([in] String service_name,

[in] String arguments,

[out] Capability session_cap);

transfer_quota([in] Capability session_cap,

[in] size_t amount);

};

As you can see in the parent interface, when a child wants to establish a session, it can provide
additional arguments, for instance if it needs a capability, that allows only limited functionality.
Such session arguments can be evaluated and potentially changed by every node, which the
session request traverses; it might help the node to find and further propagate a policy decision.

Equally, when creating a new session-capability by the root-capability, one might send addi-
tional information to the service, as you can see in the root interface:

interface Root {

session([in] String arguments,

[out] Capability session_cap);

};

The session argument string should contain sequences of tag-value pairs, like:
ram_quota=4K. The previous argument example is used by parents, that handle memory
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quota for their children, and need to transfer quota from the requesting child to the target
service, so that the service is able to perform the task at the expense of the client. Such a
resource donation might help to prevent DoS attacks (compare to section 2.2.2).

The session request migrates through the Bastei tree, until the right service is found. Thereby,
every node of the path, might change the session arguments, dependent on its policy. Figure
3.3 illustrates a migrating session request through a subtree and how the session arguments get
modified, until they reach the target service. In this example, an application requests a new
window widget from the service GUI. According to the application, the new window should
be titled as terminal and should forward keystrokes, it receives. However, the parent of the
application modifies the session request and demands, that the label should be the name of
the user, on who’s behave the application is running, followed by the programs name. After
that, the request is send to the grandparent, that really controls the GUI service. This node
contains a policy, that denies for that user to create listening windows, and therefore sets the
input argument to none.

User
Application

User
Session

Init

GUI

1

2
3

session("GUI", 
"input=read, label=terminal")

session("GUI", 
"label=bob.xterm, input=read")session("GUI", 

"input=none, label=bob.xterm")

Figure 3.3: Session request gets modified by parent nodes.

After this detailed introduction to the parent-client relationship and the whole process of
session establishment, which is quite important for the following, because it builds the ground
mechanism for the access control framework, we will focus our attention once more on the
overall architecture of Bastei.

The root of the tree node is the Core component. Core controls every physical resource and
provides a first abstraction of them. Core itself contains no policy interpretation logic and only
provides services for all its resources to its only child: Init. From the point of view of access
control Init is rather the root-node, because it’s the first node, that handles policies. It starts all
components, that are needed for the system to work and controls the communication relations
between them. Furthermore, it controls session requests to the physical resources provided by
Core, for instance it handles a RAM quota of all its children. Beside Init and Core, there exists
the Device Manager as a third component, which runs on top of Init and handles, as the name
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suggests, device accesses. Beside these first components, there are some base session-protocols
defined in Bastei, but we will not deal with them.

If you are interested in further information about Bastei, please have a look at[tud06], where
soon you will find a detailed explanation. Bastei is written fully in C++. Until now, it runs on
top of the L4v2 microkernel Fiasco, as well Fiasco UX and Linux. A port to L4.sec is work in
progress.

3.2 Real-World Scenario

To demonstrate the advantages of recursive adjusted, small software components, that run on top
of a microkernel, we want to look at a real-world example. Especially, we will see the positive
effects one obtains, when using stacked security policies in contrast to one overall policy.

Imagine a company, society, project, or something similar6 with a small LAN, that is con-
nected to the Internet. The LAN connects the PC workplaces with an internal Web server, that
is used for a Content Management System (CMS). In the CMS act different persons in different
roles, for example the administrators or the bookkeepers. Of course, configuration data should
be only available to administrators and bills only to bookkeepers; a typical example of a RBAC
policy (see section 2.1.2.6). Furthermore, the persons want to set access rights for their personal
data, so DAC (see section 2.1.3.1) needs to be handled too.

In addition, some data of the internal CMS Web presentation have to be available to the
external Web server, that can be connected from outside of the LAN. Also, there might exist
a mail server and some other Internet services. For security reasons, there should be at least a
packet filter between the Internet and the public services and one in front of the LAN, to build
a Demilitarized Zone (DMZ). Figure 3.4 illustrates the network topology.

With traditional, monolithic and complex operating systems a similar topology, particular the
separation of components in hardware, might be necessary to minimize the risk of successful
attacks from the Internet and the inner network, with respect to the public services. This results
not only in a need for a lot of computer systems, but means a high administrative effort too,
because you not only have to configure policies for Web server or packet filter, but also for each
underlying system.

If you take systems like SELinux for instance, with thousands of rules in one monolithic
policy, it is clear, that complexity gets difficult to handle and new sources of error arise. Even
if you use virtual machines, you might reduce hardware complexity and costs, but the software
complexity will still be high. Moreover, beside the policy complexity, the monolithic nature of
traditional operating systems results in one complex security monitor with one complex decision
engine, as long as it has to handle different kinds of policy types.

Now, lets have a look how this topology can be mapped into the Bastei architecture and what
enhancements arise. Figure 3.5 shows a possible design.

You can see Init as the first component7, which automatically initializes the Device Manager,
an auditing task, the initial process of the DMZ and the CMS. We assume, that somewhere in

6 I took inspiration by a small, alternative youth project in Dresden called Conni e.V., which is in the well known
dilemma of finding a policy, that allows to be open to its clientel on the one hand, and secure the privacy of the
individuals on the other hand.

7 Core is left out for simplicity reasons and because it doesn’t matter.
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Figure 3.4: Demilitarized Zone example.

the Device Manager subtree there exist two Ethernet card driver components, one that is used
as connection to the LAN’s switch or hub, and one that is used as connection to a DSL modem
or something similar, which represents the connection to the Internet. Now, Init contains a
policy, which grants access from the CMS subtree to the first Ethernet card driver and from the
DMZ subtree to the second driver. This is the equivalent to the hardware cabling of the former
topology. Furthermore, access from the CMS to the DMZ and vice versa has to be allowed, and
all components might use the auditing component, whereby only the CMS is allowed to access
it with read operations, to allow administrators to analyze it.

The DMZ initial process acts as the former outer packet filter (meaning the one towards
the Internet), because it allows some listening and connecting operations of its children with
respect to its TCP/IP stack component. For instance, the Web server is allowed to listen to port
80. Moreover, it decides which connections of its parent Init, and therefore which connections
from the CMS side are allowed. Of course, the TCP/IP stack is the only child, that has direct
access to the DMZ’s Ethernet card driver component.

The CMS initial process acts as the former inner packet filter, the one towards the LAN and
in addition as the RBAC and DAC security kernel. Upon it runs a TCP/IP stack, a Web-getty, a
document store respectively file-server, and two authentication components. The TCP/IP stack
alone is able to access the CMS’s Ethernet card driver, analogue to the DMZ subtree. Web-
getty is a thin HTTP-server, that waits for new HTTP 1.1 connections, identifies users, and asks
the CMS initial process to establish a new HTTP component, which from now on represents
the user. For the authentication purposes two components might be used: one to identify the
computer system (e.g.: with SSL) and one for the actual user. Of course, which components
have to be used, depends on the actual policy. A user might authenticate itself for one of its roles.
In this case, the user component request a new role component from its parent. Dependent on
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Figure 3.5: Scenario design in Bastei.

the user or role identity, a component is associated with, it can access documents from the
document store. All these access rules are formulated in the CMS initial processes policy.

So, we don’t need to look at this example in more depth. The explanations are sufficient to
draw some conclusions. As one can see, beside the drastically reduction of the code basis this
design implies, with respect to the traditional solution shown in figure 3.4, a nested structure of
small components leads to a functionality and policy complexity of a size, the actual subsystems
really need. This simplifies to model systems, that puts the principle of least privilege into
practice. For example, when implementing the Init component, we don’t need a policy engine,
that knows of TE, RBAC or even authentication. A simple form of an Access Control Matrix8

would be sufficient. Therefore, complexity of the components, closely to the root of the tree,
can be kept low. On the other hand, a subsystem like the CMS, doesn’t depend on the rules,
that are defined in another subtree (e.g., the DMZ). In all centralized systems with one reference
monitor and one access control policy, all components depend on this one policy. On the other
hand the complexity of the policy depends on the number of components.

However, if you really want to build systems and components, which are highly configurable
and only contain the functionality they need, its necessary to have components, which are inter-
changeable, and a framework, which simplifies the construction of new components, that fits the
requirements. Bastei is such a framework, but it doesn’t provide an abstraction to easy build up
reference monitors and their client’s and server’s stubs. Therefore I have integrated a security

8 Hereby, ACM doesn’t mean, that it has to be implemented as a matrix, but we only need the simple abstractions
subjects, objects and operations, no hierarchies of them and no further conditions.
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framework into Bastei, on the basis of the todays requirements of security policies, which I want
you to introduce to in the next section.

3.3 Monitor Framework

When designing the Reference Monitor or short Monitor framework, I followed up two
approaches. The one was to build a structure of generic nature, one easily can map security
policies to. On the other side, I had to search for appropriated constructs in Bastei, where deci-
sion engine and enforcement can take place. In this section I want to present the general policy
abstractions and where they took place in Bastei. A detailed explanation of some protocols and
procedures you will find in section 4.

3.3.1 Goals

The primary goal of Monitor is to provide a simple, generic framework with a tiny code basis,
that simplifies the construction of different types of reference monitors within Bastei. To mini-
mize complexity, the framework has to be organized in such a way, that a reference monitor uses
only abstractions it needs to support the desired policy class. From this it follows that depen-
dencies between framework components have to be minimized. It is desired, that components
are most independent of security policies as possible, so a separation of policy and enforcement
is aimed. To support a wide range of policy classes, the following properties are useful:

• Naming: A form of representation for subject, resource9 and operation names or labels
is necessary.

• Rules: We need a simple form of access rules, that define operations, which a nameable
member of the policy is allowed to process with respect to another one.

• Nested structures: Subjects, resources or even operations might build a hierarchy, like
for instance TE and RBAC require it.

• Authentication: A principal might has to be authenticated, before we bind a nameable
policy member to it. Therefore, authentication methods have to be specified for certain
subjects.

• Adaptability: Some policy classes, like Chinese Wall, ORCON and all policies, that
require DAC, make it necessary, that the policy changes dynamically.

• Information flow: Subjects may have to be marked, what access they already performed,
so that no illicit, indirect information flow occurs.

• Rule conditions: Further conditions might be useful, like allowed access time, allowed
access duration or allowed access count.

These abstractions have to be organized in a package or module structure, with few as possible
dependencies between them. In the following, we want to look at the basic package, all others
depend on.
9 From now on, we avoid the (in the security community) commonly used term object, to not confuse it with the

object orientated constructs, that will follow.
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3.3.2 Basic Abstractions

The base of the framework builds the Security_context, that represents a subject, resource
or operation within a security policy. A Security_context possesses a label, which can be
compared with each other. Furthermore, we have a Rule class. It contains a target context and
a set of operation contexts. In addition, we can distinguish rules, whether they grant or deny
access. Several rules form a Rule_set, which can be evaluated with respect to a requested
target and operation set, whether access is granted, or not. A context, that owns a Rule_set is
called Subject. Security contexts can be collected in a Policy_database, which can be used
by a reference monitor to find access decisions.

Now, lets have a look, how the reference monitor concept gets integrated into Bastei. As we
have already seen in section 3.1 and 3.2, every node in the components tree of Bastei potentially
implements a reference monitor, with regard to its subtrees. Additionally, it is the name-server
for its children. So, if a child firstly requests a service, this is done indirectly over its par-
ent. In contrast to architectures like FLASK (compare to section 2.3.2), the reference monitor
gets invoked first. At this point a policy decision has to be done and then further propagated
to the requested service. The service constructs a capability for the client, which addresses a
Server_object in the service’s name-space. Now, it is straightforward to stick policy infor-
mation to this object, meaning the information, what operations the holder of the capability is
allowed to perform, with respect to the Server_object. This is somehow the analogue of the
Access Vector Cache in FLASK (compare to section 2.2.1.1). The request procedure in Bastei
in comparison to FLASK is shown in figure 3.6.
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Figure 3.6: Resource request procedure in FLASK and Bastei.

Next we want to see, what particularly happens at the parent side. In Bastei, when a child
requests a session-capability for a service, a the parent side the corresponding Child object gets
invoked. So, it’s straightforward to associate each Child with the appropriated Subject of the
policy. If the session method (remember the parent interface in section 3.1) of the Child object
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gets invoked, we can use its Subject and its corresponding rules to decide, if access has to be
granted or not.

Therefore, the requested resource within the service has to be identified and mapped to its
appropriated security context. Furthermore, the child might have specified, which operations
it would like to use with respect to the resource. That means, it wants only that operations
to be attached to the resulting capability. For example, an user’s shell might start a graphical
viewer, that only needs read access to some document, then only the read operation should be
associated with the requested session capability, also if the requesting user has more access
rights, with regard to the target file. So, if operations are specified within a session request, that
operations have to be mapped to their appropriated security contexts too, to make a decision
possible.

Because resource and operation names are local to the specific services, the mapping of them
to security contexts have to be specified by the service designer. For instance, if you would
like to use an information flow policy, like Bell-LaPadula’s one, first of all you have to catego-
rize each service-operation as read, write or read-write operation; this can be done only by the
service programmers, as they know the server logic. An Interface Definition Language (IDL),
where developers mark operations appropriately, together with a compiler, that generates map-
ping policies, which can be used by the parent, might help in that case. Anyway, the mapping is
local to the service and it’s therefore logical to implement the mapping of resources and opera-
tions to security contexts in service representatives of the parent. Such objects already exists in
Bastei and are simply called Service.

The Monitor framework provides an inherited Service class, which has two functions, in
addition to its base class, with that you can map session arguments to resource and operation
contexts. The whole process of access decision, when a child object gets invoked is shown in
the sequence diagram in figure 3.7. For a clear arrangement, the invocation of the several rules
within a Rule_set is left out.

Now, we have seen the procedure of a session request and the following access decision. If
access is granted, the parent has to propagate its decision: what operations have to be attached to
the session-capability. It propagates the operations, either to its own parent, or to the requested
service, dependent on where the service is located. Therefore, again the session argument can
be used.

The former explanations, described the general process of access decision and propagation.
In the next sections, we will see how to construct reference monitors, that support more sophis-
ticated policy classes.

3.3.3 Nested Security contexts

Most policy classes support hierarchies of subject labels, like roles and groups and also nested
resources, to reduce the policy complexity. For instance, all subjects, with administrative com-
petence within a policy, might inherited from role admin. Then, only for that subject the appro-
priated access rights needs to be set. The Monitor framework defines an additional package,
that supports nested subjects called Domains and nested resources called Types, in analogy to
Type Enforcement.
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Figure 3.7: Decision making after a session request.

Both classes encapsulate a set with security contexts, from which they are derived, and a set
with derivatives of it. Now, if a resource is requested by a child, the rules of its corresponding
domain are checked, as well as the domains, this domain is derived from. When evaluating,
which rule matches the requested resource, we compare not only the target type of the rule, but
its derivatives too.

Take the security policy in figure 3.8 for example. We have the user Bob, who is an adminis-
trator. Administrators are allowed to read configuration data, whereby all policy data is classi-
fied as configuration data. If a component requests policy data on behalf of Bob, first the rules

bob

configadmin

policy

read

Figure 3.8: Example policy with nested security contexts.

of the bob domain are checked. No rules are defined, so the generalized domains are checked,
in this case only admin. This domain defines the read rule for the config type, so the requested
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policy type is checked against it. Because the labels are not the same, the inherited types of
config are checked and this time it matches and the access is granted for read operations.

3.3.4 Authentication

Every node, that allows the creation of new children at runtime and as well implements a policy,
have to bind a security context to newly created children. In addition, some nodes have to
support execution requests from other nodes, for instance if a child requests a new user session.
Therefore, an extra package is provided by Monitor, for authentication purposes.

In general, when a child C wants to authenticate an identity, there is no difference to other
requests. When C initiates an authentication session request, its parent P invokes the concerning
authentication service S, after evaluating, that the child is allowed to use S in connection with the
given identity. The service returns a capability for a newly constructed authentication object,
which holds the requested identity. With that capability, the client is able to authenticate the
identity.

After successful authentication, service S requests for a session to a so called offspring ser-
vice of node P. This service allows to start new children with a specified identity. Therewith, S
can request for the offspring service, it has to know of the service’s name. Therefore, P trans-
mitted that service name previously, when requesting for the authentication capability. If S is
allowed to use the offspring service with the specified target identity, P returns a capability to
an Offspring_server object, that encapsulates the identity. The authentication service returns
that capability to its client C and closes the session to C.

Now, the client is able to send an execution request to the Offspring_server object, which
firstly evaluates, if the encapsulated identity is allowed to execute the specified binary. You can
see the whole process of authentication exemplary in figure 3.9.

This design of the authentication process enables us to specify, which instance is able to
bring which identity into the system, thereby which authentication mechanism has to be used
and lately what binaries this identity is able to execute. Moreover, using this protocol the parent
node on who’s behalf the new task is started, is able to construct the Offspring_server object
at the expense of the requested identity’s memory quota.

You may believe, this protocol is needlessly complex. Why not transferring identity and
binary, that has to be started, within the initial session request? Then the parent is able to
do the authentication and if that succeeds, it can execute the binary in a new child with the
corresponding identity. But this second solution implies a potential DoS attack, as the parent
always has to wait for the authentication to complete. In the introduced solution, the client itself
has to perform the authentication; the parent only controls and mediates session requests.

3.3.5 Dynamic policies

Until now, we only considered static policies, that are defined off-line, but policies might change
at runtime. For ionstance, if we want to support Discretionary Access Control or Chinese Wall
like policies, we might add, remove or change rules. Hereby, the addition of more access
rights is something simple, because it doesn’t influence existing capabilities. But if access gets
restricted, we possibly have to revoke capabilities or change their semantic.
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Figure 3.9: Getty authenticates user Bob and starts a binary on behalf of Bob.

In general, there exists two possibilities. One is to simply close sessions, that provide access
facilities, which are forbidden by the modified policy. The other possibility is to contact the
corresponding services and to propagate to them, which rights have to be restricted. Of course,
in this case the service respectively its Server_objects must provide an additional interface,
the parent can use to send modifications. In addition, the parent has to save the capability,
addressing the resulting Server_object, together with the information, what access rights it
has propagated to that object. With other words, the parent has to track sessions, it established.
As we have already seen in figure 3.1 (see section 3.1), there exists already a data structure for
tracking sessions in Bastei: the session list. Every Child object associates such a list, which
contains so called Session objects. For our purposes, these objects only need an additional
attribute, representing the policy data, that was send to the service side. When a policy gets
modified, the parent traverses its children’s session lists and checks the decisions, it has made
with respect to the modified policy. It invokes all Service_objects, that cache invalid access
rights and transmit the appropriated rights.

Both presented solutions may cause an exception, if the client tries to access the
Server_object, after its access rights were restricted. The only difference is, that if the session
was closed, an exception gets thrown for sure. Whereby, if the access rights are modified on the
server side, an exception only occurs, when the requested operation is forbidden by the modified
policy. Both solutions might be used. The first one reduces server and parent complexity a little
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bit, with the overhead of requesting a new capability, each time a policy changes and a session
gets closed. In both cases, the client needs to handle invalid calls and the parent has to track,
which access rights it has attached to which sessions.

3.3.6 Sophisticated information �ow policies

Policy classes, that need information flow tracking, like the ORCON model (compare to section
2.1.3.3), complicate the process of decision making. Such models require, that we check not
only the access rights of the requesting subject, but consider in addition, to what resources the
subject already has access to. If the requested target isn’t permitted to access the resources, the
requesting subject is already connected to, access should be denied. The other way round, if
resources respectively other subjects, the requesting subject keeps sessions to, aren’t allowed to
access the requested resource, access has to be denied too.

Obviously, the process of access evaluation in the Subject class needs to be redesigned in a
inherited class. Also a further attribute is needed: the set of security contexts the subject owns
sessions to. It appears to be easy to enhance the framework to support ORCON, but we won’t
go into more depth here, because this policy class isn’t the main focus of my work and therefore
I didn’t implement it.

3.3.7 Further conditions

At last I want to outline, how additional conditions of rules can be integrated into Monitor.
Imagine, we want to specify, that access to a resource can be made only a confined number of
times, or we want to limit the validity of capabilities to a specified period of time. In general,
there is no problem to extend the policy constructs by such aspects. For instance, we can add
a time-stamp and time period attribute to the operation’s context, or we add a counter to it.
Problems may arise, because the services might have to support these new constructs, as they
enforce the access control. As long as we want to evaluate such conditions, each time a client
invokes the service by its capability, the service needs to control the conditions. For instance, it
has to increment the counter, or to check the time-stamp. This is somehow a dilemma, because
we wanted to make the server independent from its policy and these conditions are part of the
policy. A solution would be to only check such attributes, when a session gets established, or,
if this is not sufficient, to use a proxy, that is addressed by the client’s capability, which checks
all conditions. After a successful checking, it propagates the client’s calls to the service.

Applications in higher levels of the Bastei tree, that are constructed with regard to such con-
ditional access rules, like DRM products, time aware applications, and so on, may use more
sophisticated constructs of the Monitor framework at the outset. In general, it is possible to use
more sophisticated components on top of a simple reference monitor and vice versa, to use a
simple component on top of a reference monitor, that supports additional policy features. An
important feature of the framework is, that the derived, sophisticated constructs in Bastei inter-
act correctly with the basic forms of them. How this is done, we will see in the next section,
where some implementation details will be explored.
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In this section, I will explain some details of the implementation, especially concerning the
encoding of policy data. Furthermore, you will learn how to use the framework classes to
implement reference monitors and services, that are under control. I will discuss dependencies,
that has to be noted, when you want to enhance the framework. Therefore, we will look into the
implementation of DTE. At the end of this section, the construction of authentication services
is explained. As the whole Monitor framework is written in C++, a basic understanding of this
language is helpful to understand the following.

4.1 Serializing policy objects

Section 3.3.2 gives a quite detailed overview to the controlled process of session establishment.
But it does not cover, how the required policy information is encoded in the session argument
string and decoded at the receiver’s side. Of course, we need some general mechanism and not
a service specific implementation, so that each node, the session request traverses, is able to
interpret that information. As already mentioned, we need to transfer the target resource and
potentially operations, the client wants to use with regard to the resource, within each session
request. Therefore, we use the suggested scheme of tag-value pairs (compare to section 3.1),
with the tags: Resource and Operation. The value part consists of an XML representation of
the particular resource’s Security_context and Operation_set.

In general, you can serialize each class of the Monitor framework, that represents a policy
part, to an XML string. To encode policy data in a human readable manner has several advan-
tages. First of all, you can easily express security policies, but it helps to interpret auditing
entries, or the actual used policy at run-time. The XML representation of a Monitor object con-
tains for each relevant attribute a corresponding tag. You can see the XML representation of the
basic Monitor classes in figure 4.1.

Monitor construct Related XML scheme
Security_context <ID>String</ID>
Operation_set <Operation>Security_context</Operation><Operation>...
Rule <Resource>Security_context</Resource> Operation_set
Rule_set <Rule>Rule</Rule><Rule>...
Subject Security_context Rule_set
Policy <Subject>Subject</Subject><Subject>...

Figure 4.1: Mapping of policy objects to their XML representation.
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To emphasize the simplicity of this scheme, look at following sample policy, which defines
access rights for Alice. She is allowed to read the document great_plan and further to read and
execute the binary shell.

<Subject>

<ID>alice</ID>

<Rule>

<Resource>

<ID>great_plan</ID>

</Resource>

<Operation>

<ID>read</ID>

</Operation>

</Rule>

<Rule>

<Resource>

<ID>shell</ID>

</Resource>

<Operation>

<ID>read</ID>

</Operation>

<Operation>

<ID>exec</ID>

</Operation>

</Rule>

</Subject>

It is quite easy to serialize policy information for persistence reasons or to transmit it by IPC to
a service. Every class, whose objects needs to be serialized, implements the following interface,
respectively inherits from the following class:

class Serializable {

public:

virtual int to_string(char *buf) = 0;

virtual int length(void) = 0;

}

Hereby, the length method delivers the resulting string length and to_string writes the XML
data to the given buffer. To construct objects by their XML representation, we have an additional
class called Context_factory. Such a factory has to be defined for each relevant combination
of framework classes, that represents a part of the policy. For instance, we have a factory
defined for the basic framework classes (see section 3.3.2) and one for using domains and types
(see section 3.3.3). These factories are used by parent nodes and services to analyze session
requests. Parents also use it to parse their initial security policy.

For the basic classes of the framework there are even two different factories defined: one
for parents, that act as reference monitors and one for services. The first factory uses a
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Policy_database, when it analyzes a security policy or a part of it. When parsing the security
context of a resource, operation, or subject, it firstly looks up in the database, if the context is
already in there. Otherwise, it puts the parsed context in the database. A central database here is
useful, to prevent duplicates, because contexts reference other ones within their rules, or when
they are nested (compare to section 3.3.3). On the service side, mostly a database is not needed.
Therefore the second factory simply constructs Security_contexts and Operation_sets
from XML strings.

By transmitting a whole object in its serialized XML form, we are able to transmit more
relevant policy data, than just the name of resources and operations. For instance, we are
able to associate each operation context with a time-stamp and a validity time range. This
time information will be transfered within the session string, when the operation context gets
serialized. A service, that receives the session request and is able to interpret the additional
information, can enforce more fine grained access control.

By using an XML scheme, one obtains the advantage of compatibility between different
framework constructs in different nodes. Every node, only analyzes the XML tags of a resource
context or operation set it understands. Take the example with the time-stamps in operation
contexts. A parent node, that implements such a policy model, will transfer the time-stamp
information within the session argument string each time it requests a service, regardless of,
whether the service is able to interpret the information or not. But, if there are services with-
out time dependent access control enforcement, because it’s not implemented nor needed, that
doesn’t matter, because they will ignore a time-stamp tag in the operation contexts. The other
way round, extensions of the framework need to be carefully designed, so that they will interpret
simple policies and policy parts, that miss the new extensions, further on correctly.

4.2 Implementing controlled services

When implementing a service, one has to define an interface, from which the client and server
side will be derived, like the Root or Parent interface in section 3.1 for instance,. On the
client side, to use that interface, the client firstly needs a session to the server. Therefore,
Monitor contains a class called Service_client_executive, that encapsulates the process of
session establishment in it’s constructor. The client stub of a service should inherit from it. This
class provides the client side of an IPC channel, after a successful session establishment. A
derived class can use this so called IPC_client object, which contains the session capability,
to transmit an operation code, that represents the desired function, and further arguments to the
server, as well as receiving results from the server. To facilitate the understanding, I want to
give an example. A service, that controls a terminal has the following simple interface:

class Console {

protected:

enum Opcode {MESSAGE,WARNING};

public:

virtual void print_message (char *str) = 0;

virtual void print_warning(char *str) = 0;

};
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The client stub is defined as follows:

class Console_client : public Console,

public Service_client_executive {

public:

Console_client() :

Service_client_executive("Console", "tty1", "4k") {}

virtual void print_message (char *str) {

*server() << MESSAGE << Buffer(buf) << IPC_CALL;

}

virtual void print_warning(char *str) {

*server() << WARNING << Buffer(buf) << IPC_CALL;

}

};

Hereby, the function server, which is inherited by Service_client_executive, returns a
pointer to the IPC_client, the channel to the server. As you can see, first we put the operation
code into the channel, after that the string argument, and lastly the code for an IPC call.

To be able to establish a session at all, the constructor of the Service_client_executive

class expects the service’s name (Console), the resource’s name (tty1) and the memory quota
(4K), we want to donate to the server. Optionally, one could provide an array of operation names
and a further string argument to the constructor. Within the constructor, the names are used to
construct an appropriated session argument string and to request for the session at the client’s
parent. The session call in this example would look like this:

session("Console","Resource=<ID>tty1</ID>, ram_quota=4K");

When no valid capability is returned and therefore no communication can be established an
exception gets thrown. Otherwise, the capability is used to construct the IPC_client object.

Now, we want to look at the server side of a service implementation, that enforces access control.
As already mentioned in section 3, for each session there is a corresponding Server_object at
the server side, that has to support the service’s interface. In general, a class, that inherits from
Server_object, has to implement a dispatch function, which “unmarshalls” arguments from
the IPC channel and calls a function of the service’s interface, based on a given operation code.

The Monitor framework provides a so called Server_object_executive class, which is
derived from Server_object and has as additional attributes a resource and operation set. In its
dispatch implementation, first it checks if the client is able to proceed the requested operation,
that is known by the given operation code. The definition of this method is as follows:

int dispatch(int op, Ipc_istream &is, Ipc_ostream &os) {

if(!_valid_ops[op])) {

PWRN("unallowed access request detected");

return 1;

}
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return _hook_dispatch(op,is,os);

}

Hereby, _hook_dispatch is a hook-function1, that need to be defined by derived classes. It has
to do the “unmarshalling” work and invokes the appropriated function based on the given oper-
ation code. But before this function is called, the server object evaluates by an array of Boolean
values called _valid_ops, if the desired operation is allowed. This array gets initialized in the
constructor, on the basis of the transmitted operation set. As we have no previous knowledge
about the count of operations and their names, these information must be provided by derived
classes. The count of operations one specifies by a template argument, as the names are defined
by a string array, one has to provide, when invoking the constructor.

The constructor of the Server_object_executive class is defined as follows:

template <int OP_COUNT, typename RESOURCE, typename OPERATION>

class Server_object_executive : public Server_object {

public:

Server_object_executive (RESOURCE *res,

Operation_set<OPERATION> *ops,

const char *op_names[])

: _res(res), _ops(ops) {

for(int i = 0; i < OP_COUNT; i++) {

if(_ops->find(op_names[i]))

_valid_ops[i] = true;

else

_valid_ops[i] = false;

}

}

...

};

As one can see, the constructor looks up each operation name in the given operation set and if it
gets found, the concerning entry in the array is set to true, otherwise to false. The encapsulated
resource can be used by a service to determine, what resource itself represents with regard to its
client.

So, a service designer only needs to define the _hook_dispatch function and doesn’t need
to worry about access control. Again let’s consider the terminal example:

static const char *opcode[] = {"print","warn"};

class Console_server : public Console, Service_object_executive<2> {

protected:

int _hook_dispatch(int op, Ipc_istream &is, Ipc_ostream &os) {

Buffer args;

is >> args;

1 Such functions are also often denoted as template methods, derived from the design pattern: template method
pattern[wik06]
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switch(op) {

MESSAGE:

print_message(args.addr());

return 0;

WARNING:

print_warning(args.addr());

return 0;

}

return 1;

}

};

This is everything, that needs to be defined at the server side, beside the actual functionality. Of
course, by using a concerning IDL and IDL compiler, this work could be done automatically.

4.3 Implementing reference monitors

Next, we will see, how parent nodes need to be modified, to take advantage of the framework.
I have already mentioned, that nodes, which enforce a specific policy, need a database and an
appropriated Context_factory to read in their initial policy and to analyze session requests
from their children. Moreover, they need to associate each of their children with a subject of
their policy. The Monitor framework provides a class called Child_executive, that encapsu-
lates such a subject. Moreover, it already implements the process of evaluating if a session is
valid and the following construction of the session argument string, that has to be send. You can
see the implementation of the session function in the Child_executive class here:

virtual Capability session(const char *service_name,

const char *args) {

...

if(_controlled_service(service_name)) {

...

if(!_session_valid(service_name, args, buf, len))

return Capability(); //return invalid capability

return _hook_session(service_name, buf);

}

return _hook_session(service_name, args);

}

As you can see, when the function gets invoked, firstly a hook-method is called, which delivers if
the desired service is one, that is under control of the policy. By default, this method returns true
for all services, accept the services of the Core node. Of course, this method can be overwritten
by derived classes. If the service is under control of the policy, the function _session_valid

is called, which evaluates by the encapsulated subject’s rules, if the session request is valid or
not. The process of evaluation is the same as in the diagram in figure 3.7. When the request is
valid, the function fills the given buffer with the correct session arguments, that has to be used
to contact the service. If the session request is valid or the requested service is not under control
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of the policy, the _hook_session-method gets invoked, which has to do the actual work of
session establishment. Because this process is specific to the node, this function is pure virtual
and has to be implemented by a specific, derived class.

4.4 Domain and Type Enforcement

Next, I would like to introduce you to the modifications, that have to be done, if we want to
enhance the defined security contexts, exemplary by the implementation of domains and types
(see section 3.3.3). Of course, the modifications depend on what kind of attribute and behavioral
changes are needed, but they all have some rules of thumb in common.

Firstly, if you add additional attributes to a security context class, you need to redefine the
to_string and length methods, therewith the attributes can be made persistent and trans-
ferable. In addition, you will have to implement a new context factory (compare to section
4.1). Secondly, when defining a new class of resource contexts you will need to define a new
class of subject contexts too, as subjects always have to be derived from the resource contexts.
That is because subjects can also be referenced as resources. For an example, let’s look at the
implementation of nested security contexts.

The class diagram in figure 4.2 shows the coherence of the basic security contexts for
resources and subjects and their derivations for hierarchical contexts. As you can see, the simple
Subject class is derived from Security_context and the Decidable_context class, which
encapsulates the rules. The DTE package within the Monitor framework provides in addition
a Nested class, that contains a set of specific contexts and a set of generalized contexts. This
class already implements the Serializable interface. The class Type represents nested con-
texts for resources. Nested subject’s contexts are provided by class Domain, whereby this class
is derived from Type and from Decidable_context. The classes Type and Domain have to
overwrite their to_string and length methods2, but that’s no problem, because they only need to
combine the implementations of their base classes, as the following example shows:

virtual int length (void) {

return Security_context::length() + Nested::length();

}

This is the definition of the length function in the Type class.
I don’t want to go into more depth in how nested contexts are serialized, but you need to

know, that a DTE policy can define two more attributes of resources and subjects in its XML
representation by the tags: GeneralizedContext and InheritedContext. Within these tags one has
to specify an ID of an already defined resource or subject. When the parser finds such a tag, it
searches for the specified ID in the database and if it finds a corresponding context, it puts that
one into the set of generalized or specific contexts.

Remember the sample policy in figure 3.8. The XML form of it, looks like this:

<Resource>

<ID>policy</ID>

</Resource>

2 Not least because of problems with multiple inheritance, as both base classes provide partially the same interface
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+ compare_to(c : Security_context) : int

+ to_string(str : char*) : int

+ length() : int

Security_context

+ evaluate_access(...) : bool

Decidable_context

- label : char* - rules : Rule_set

Subject

+ to_string(str : char*) : int

+ length() : int

- generalized_set : Security_context_set<>

- specialized_set : Security_context_set<>

Nested

+ to_string(str : char*) : int

+ length() : int

+ compare_to(c: Security_context) : int

+ to_string(str : char*) : int

+ length() : int

Type

Domain

+ evaluate_access(...) : bool

+ to_string(str : char*) : int

+ length() : int

Figure 4.2: Class dependencies of security contexts.

<Resource>

<ID>config</ID>

<InheritedContext>policy</InheritedContext>

</Resource>

<Subject>

<ID>admin</ID>

<Rule>

<Resource><ID>config</ID></Resource>

<Operation><ID>read</ID></Operation>

</Rule>

</Subject>

<Subject>

<ID>bob</ID>

<GeneralizedContext>admin</GeneralizedContext>

</Subject>
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To achieve a correct decision making with domains and types, the compare_to method is rede-
fined. Now, if a type gets compared against another one, its inherited contexts are included in
the decision. The method is defined as follows:

virtual int compare_to(const Security_context &c) {

int ret = strcmp(this->name(), c.name());

if(!ret)

return ret;

return (Nested::compare_to(c)) ? ret : 0;

}

As you can see, only the specific contexts of the type, we apply the compare function to, are
considered. This is done, because when checking if a rule has to be applied to a request, we
always have a specific resource, that is requested and a potentially more general resource, as
part of the rule. So, we only need to check the specific contexts of the resource within the rule.

The process of deciding, whether a requested resource can be accessed, or not, is redefined
in the Domain class. The overwritten evaluate_access function traverses the rules of the
domain, as well as the rules of the generalized domains. Thereby, it collects every operation,
granting rules define in a set, and all operations, that denying rules define in a separate set. At
the end, it returns the complement of the denying rule set in the granting rule set.

4.5 Authentication and O�spring service

When implementing authentication services, the scheme, suggested in section 4.2 and 4.3, can-
not be used. If a parent node requests an authentication service for a session, on behalf of one
of its children, it has to transmit not only the desired identity and allowed authentication opera-
tions, but also the name of its own offspring service (compare to section 3.3.4). This is done, to
enable the authentication service to create a new offspring at the requesting node’s side, when
authentication was successful.

The needed functionality is provided by a derivation of the Child_executive class called
Child_authenticator. It redefines the _session_valid method as follows:

virtual bool _session_valid(const char *service_name,

const char *args,

char *out_args,

int len) throw(Buffer_length_exception) {

if(!Child_executive<R,O,S>::_session_valid(service_name, args,

out_args, len))

return false;

if(_hook_auth_service(service_name)) {

if(!Arg_string::set_arg(out_args, len, "Node", _offspring_service))

throw Buffer_length_exception();

}

return true;

}
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This implementation maintains the functionality of its base class, but adds a Node argument to
the session string, when an authentication service is requested. The value of this argument has
to be the offspring service name of the parent and it must be given to the constructor of the
Child_authenticator class.

The _hook_auth_service function again is a hook-function, a derived class has to imple-
ment. It decides, whether the given service name is the name of an authentication service or
not.

As an authentication service has a somehow foreknown interface, the Monitor framework
provides a ready to use server object for such services called Authentication_server, which
is derived from the Server_object_executive class and the following class:

class Authentication {

protected:

enum Opcode {AUTH,REMOTE};

public:

virtual Capability authentication(void) = 0;

virtual Capability remote_authentication(Capability channel) = 0;

};

The first function should be used, when the necessary authentication data can be accessed
directly by the authentication service. For instance, when the authentication service provides a
password field in a window of its own behalf, where the user can type in his or her password.
The second function has to be used, when the authentication data cannot be accessed directly,
but is provided by a communication channel. For example, when a user tries to authenticate
itself from another system out over a TCP connection. In this case a capability for the com-
munication channel, for example a capability for the corresponding socket, has to be given as
parameter. Regardless of which method is used, the client gets a capability to an offspring server
object of its parent as return value, as long as the authentication was successful.

The whole process of “unmarshalling” the IPC message and invoking the right function, as
well as the session request to the offspring service, who’s name was transmitted prior to the
service, is already implemented by the Authentication_server class. A service designer
only has to fill the following two hook-methods with functionality:

virtual bool _hook_authentication(const char *identity) = 0;

virtual bool _hook_remote_authentication(const char *identity,

Capability channel) = 0;

The interface of an offspring service is also known in advance, because we only need one
function start, that takes a binary name and further arguments and starts the binary on behalf
of the prior requested subject, as long as the subject is allowed to execute that binary. Similar
to the Authentication_server class, there exists a ready to use Offspring_server, which
does the whole work including the check, if the binary is accessible by the subject. The actual
procedure of starting a new child is encapsulated by a hook-method, as this process depends
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on what child class the parent uses. The _hook_start method is invoked together with the
subject’s security context, the binary name, and further invocation arguments as parameters.
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In this section I evaluate the Monitor framework with respect to generality and complexity.
Moreover, I consider some aspects related to the resource consumption, caused the framework.
At last, open issues and enhancements of the framework, that need to be done, are discussed.

5.1 Generality

In the context of this work, generality of the framework means the ability to put any existing
policy model into practice. Also, if this goal is not reached by the existing implementation,
it will be reached by some further enhancements. The current version supports with its base
package an implementation of the Access Control Matrix, as well as the DTE model (compare
to section 2.1.2.3) in an extra package. The rules of both models are mandatory and of static
nature and cannot be modified by subjects. Regardless of the actual policy model, the framework
supports an authentication mechanism to link identities to instances of the system.

Although, the Access Control Matrix and DTE model are in fact very powerful and cover
a wide range of different policies, some properties are still missing. That are: dynamic rule
modifications, DAC and history tracking.

In fact, these three properties are partially mutually dependent: The ability of changing rules
at runtime is required to implement policy models, like Chinese Wall. In addition it’s a pre-
requisite for DAC. To support this feature, the framework has to provide session tracking and
an capability revocation or modification mechanism, as already outlined in section 3.3.5. DAC
would require a second policy database held by the reference monitor node, containing the
discretionary rules and an additional service, that facilitates authorized clients to modify these
rules. The third missing feature is the tracking of “who has or had access to what resource”, as it
is required for models like Chinese Wall and complex information flow policies. The necessary
modifications to support history tracking are outlined in section 3.3.6. The broached additional
features, should be organized in separate packages, so that we can combine them to new pack-
ages, supporting actual policy models. For instance, we could combine a DAC package with
the base package to design the Bell-LaPadula model. In general, it seems to be relatively easy
to complete the framework and probably requires only minor or no changes to the existing part.

From the present point of view, there are no clues, that the design of the framework restricts
us to certain policy models.

5.2 Complexity

When evaluating security relevant software, one of the main quality attributes is complexity,
because the rate of vulnerabilities in software is correlated with its complexity. To measure the
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complexity of the framework we will take Source Lines of Code (SLOC) as scale. All data is
measured with sloccount, a tool written by David A. Wheeler[Whe06].

In figure 5.1 you see the current framework packages and their sizes in SLOC, whereby each
package is split in a part specific to the parent node, that represents the reference monitor, and
a service part, that enforces the access control. As one can see, the total amount of source lines

Monitor package SLOC
Base 1184
Parent 1032
Service 992
DTE 365
Parent 365
Service 0
Authentication 319
Service 180
Parent 165
Total framework 1868

Figure 5.1: SLOC of the Monitor framework.

is fewer than 2000, which is quite less. Of course, we have to count the parts of the Bastei
framework, these packages depend on, too. Furthermore, these values aren’t expressive as
long as we have no size measuring of an example, that compounds the framework classes to a
working application. Therefore, I’ve implemented two reference monitors. One of them can be
used as a simple Init process, like that in the scenario of section 3.2. It supports a simple Access
Control Matrix model by using the base package of the Monitor framework. The other one can
be used as the CMS component of the same scenario, whereby this application supports Domain
Type Enforcement and authentication. The source line numbers of both applications are listed
in the table in figure 5.2. You see, the necessary “glue”, which compounds the framework

Application component SLOC
Bastei ≈ 4600
Parent (Base) 1032
Parent (DTE + Authentication) 1562
Init 143
CMS 216
Init total ≈ 5780
CMS total ≈ 6380

Figure 5.2: SLOC of example reference monitors.

constructs to an usable application, is negligible with regard to complexity measurement. Both
applications consists of approximately 6000 SLOC. For these two examples the difference with
regard to complexity is still small. The CMS node has about 600 SLOC more than Init. If we
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add additional packages to the CMS node, as needed for DAC for example, the difference in size
becomes more significant. This fact reinforces the design decision to organize different policy
properties in mutually independent packages, which can be combined in new packages to build
a specific policy model. In contrast, using only one library for all nodes has the advantage of
full compatibility, but by the price of, whether missing features and therefore no generality, or
by an increased complexity.

The size of the source code is only one aspect of complexity. Another one, specific to this
work, is complexity of the policy. Of course, the complexity of a policy depends on the com-
plexity of the whole system, meaning how many components and identities have to interact and
how open or restrictive the system has to be. Nevertheless, by structuring the system in a way,
like Bastei does it, one obtains a tree of components, with the applications most crucial to secu-
rity nearest to the root. As the policy of one node only depends on its ancestors, the complexity
for the most security sensitive policy parts, which relies near to the root of the policy tree, is
reduced in contrast to one monolithic policy.

Moreover, such a design enables a developer to configure base systems, that can be used for
a variety of operational areas with proven security properties. At the same time, these systems
can be used to run component subtrees with individual policies upon them, that don’t interfere
with the base system. For instance, it will be easy for users to define their own mandatory
policies, without the need of understanding a sophisticated overall system policy, as for instance
in SELinux.

Let’s have a look on the scenario of section 3.2 once again. There, the CMS and DMZ
subsystem are initialized by the Init node. We would implement such a system with fixed and
proven policies for the Init and DMZ node, that simply can be used by organizations, which
only need to define a policy for the CMS node with regard to their organizational structure and
needs.

To sum up, one can state without proving it by numbers, that complexity of more security
sensitive components can be reduced, by using a nested structure, which represents the security
sensitivity of the components, as in the Bastei architecture. To give a factor of reduction, we will
have to implement a fully working scenario first, that can be compared against an appropriated
SELinux configuration, for instance.

5.3 Overhead

Next, I examine the overhead, that is caused by using the framework. Although, it is probably
the most interesting point, I will not present any performance measurements, because it wouldn’t
be expressive currently. Firstly, the Bastei architecture isn’t ported to the L4.sec security kernel
yet. This lack of kernel-supported capabilities has a great impact on performance. Furthermore,
a simple measurement of one capability allocation or usage wouldn’t be expressive. Again,
we will need a fully working scenario, that can be compared to the same scenario running on
existing systems. Moreover, some kind of macro-benchmark has to be defined.

However, I expect only little overhead by the access control decision process of one node,
but more loss of performance by the several indirections, that need to be done when a client
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requests for a capability for the first time. Hereby, the overhead is dependent on the distance of
the client to the service in the components tree.

5.3.1 Memory

Beside the computing effort, the additional memory usage is of particular interest. Figure 5.3
shows the object sizes of some important framework classes in bytes. For the child and service
class you see the difference with regard to their base classes, which are defined by the Bastei
framework. The memory overhead for children and services can be neglected, as long as a node
needn’t to handle thousands of them, which won’t be the case normally. Now, let’s have a look
how much memory a policy occupies.

Monitor class Memory consumption in bytes
Security_context 28
Rule 36
Subject 44
Type 44
Domain 60
Child_executive (+)14
Service_executive (+)4

Figure 5.3: Memory consumption of some Monitor objects.

Assumptive, a policy consists of the set of subjects S, the set of resources R, the set of
operations O, and the set of rules P. The average length of the labels in S is denoted with s,
the average length of the resource labels is r, and the average length of the operation names
is o. Furthermore, the function count(x) delivers the number of elements in x. The memory
consumption of a policy, using only the simple abstractions of the Monitor base package, is
calculated by the following formula:

count(S)∗ (4s+44)+ count(R)∗ (4r +28)+ count(O)∗ (4o+28)+ count(P)∗36.

A policy comprising of 6000 rules, 100 different subjects, 5000 resources and 500 opera-
tions with an average label and name length of 6 characters, consumes 496 kilobytes of the
reference monitor’s memory. However, this is an extreme example for nodes, that control a
file-system or something similar.

The memory consumption of a DTE policy is calculated by the formula:

count(S)∗ (4s+53)+ count(R)∗ (4r +44)+ count(O)∗ (4o+28)+ count(P)∗36.

The above example would result in 550 kilobytes, when a DTE policy is involved.
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5.4 Open issues

At last, I want to discuss open issues, that exist beside those, already discussed in section 5.1.
One important enhancement is an additional language or a language extension, that helps to
define the mapping of service specific resource and operation names to members of the policy
database. Currently, there exists no real mapping and a policy must contain every resource and
operation name, which increases policy complexity and is inacceptable. Furthermore, it should
be possible to define, whether a service itself is a resource, or if it administers various resources.
During the process of service announcement, the concerning policy part has to be parsed and an
appropriated service object has to be constructed.

It is imaginable, that these mappings are partially generated by an IDL compiler, when using
an IDL language for the service’s interface definition. For instance, one marks all defined
methods of the service interface as read, write, or read-write. The compiler constructs a policy
sample, containing the mappings of operation names to these abstract operation contexts. A
reference monitor, that implements some information flow policy now can use the policy sample
to map operations to these abstract one.

However, the resource and operation mapping is an open issue, that needs to be further inves-
tigated. Another feature, that is desirable, is the integration of the memory quota a subject owns
into the policy language. As I mentioned briefly in section 3.1, in Bastei a parent handles a
memory quota for each of its children. Consequently a parent not only acts as a reference moni-
tor for its children, but also as resource monitor (compare to section 2.2.2), at least for memory.
A policy language enhancement and potentially a migration of the quota mechanism out of the
Bastei framework into the Monitor framework needs to be discussed. Currently, memory quota
is associated with child objects, but it seems to be more sensible to attach it to subjects of the
policy.
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In my thesis I have determined existing security policy models and their different properties and
commonalities, as well as arrangements of security mechanisms in existing operating systems.
Also, I have investigated the capability mechanism of the microkernel L4.sec, a new experimen-
tal security kernel, for which it was my task to evaluate the management of different policies on
top of it.

In parallel, members of the operating system research group of the University of Technology
Dresden developed a framework, that is called Bastei, and which defines among others a proto-
col of capability propagation between clients and services. Moreover, it foregoes global names
in a system and introduces a nested program tree, where children nodes are controlled by parent
nodes, with respect to their access facilities to other nodes in the tree.

I designed an own framework called Monitor, that takes advantage of the Bastei architec-
ture, and which supports software developers creating new applications, that act as parent nodes
within Bastei, and which implement a specific security policy model. Until now, this framework
supports a model, which is equivalent to the Access Control Matrix model, and an implemen-
tation of the Domain Type Enforcement model, as well as an authentication mechanism. In
addition, I have outlined solutions for missing features, that serve as prerequisite for other pol-
icy models. In a prototypical solution I have implemented two reference monitors respectively
parent nodes, that show the usage of the framework and served as evaluation base.

One of the main results of my work is the discovery, that the usage of several, different,
and nested reference monitors promises better security properties, than one complex reference
monitor. Moreover, we can use several different security policies in one system without inter-
ferences between them. Also, the presented architecture simplifies the definition of individual
policies, that work upon basic and common policies, which fit for a lot of operational areas.

A detailed performance measurement of the new Bastei architecture, as well as an overhead
measurement of the Monitor framework logic is left out in this work.
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ACL Access Control List

ACM Access Control Matrix

AIM Access Isolation Mechanism (in MULTICS)

AVC Access Vector Cache

CDI Constrained Data Item

CMS Content Management System

DAC Discretionary Access Control

DDT Domain Definition Table

DMZ Demilitarized Zone

DoS Denial of Service

DRM Digital Rights Management

DTE Domain Type Enforcement

DTT Domain Transition Table

EROS Extremely Reliable Operating System

FLASK Fluke Advanced Security Kernel

ICAP Identity-based Capability Protection System

IDL Interface Definition Language

IPC Inter Process Communication

IVP Integrity Verification Procedures

LOCK Logical Coprocessing Kernel

MAC Mandatory Access Control

MLS Multilevel Security

MULTICS Multiplexed Information and Computing Service
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NCSC National Computer Security Center

NGSCB Next-Generation Secure Computing Base

NSA National Security Agency

OASIS Organization for the Advancement of Structured Information Standards

ORCON Originator Controlled Access Control

PACL Propagated Access Control List

PSOS Provable Secure Operating System

RBAC Role Based Access Control

SAT Secure ADA Target

SCAP Secure Capability Architecture

SELinux Security Enhanced Linux

SLOC Source Lines Of Code

TCB Trusted Computing Base

TCSEC Trusted Computer System Evaluation Criteria

TE Type Enforcement

TP Transformation Procedure

UCON Usage Control

UDI Unconstrained Data Item

XACML eXtensible Access Control Markup Language
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