
A Case Study on the Cost and Benefit of Dynamic RPC
Marshalling for Low-Level System Components

Norman Feske
Technische Universität Dresden

feske@os.inf.tu-dresden.de

Published in SIGOPS OSR Special Issue on Secure Small-Kernel Systems, July 2007,
Minor correction of the machine type used for the benchmarks in April 2008

ABSTRACT
Interface de�nition languages are omnipresent in microkernel-
based operating systems for providing a time-tested solution
for realizing communication between user-level components.
Driven by advancing kernels and application demands, IDL
compilers and the generated communication-stub code have
become signi�cant contributors to the tool-chain complexity
and the size of the trusted-computing base of such systems.
This paper examines the performance and the engineering
costs of an alternative technique for RPC communication
between microkernel servers. Initially intended as an in-
terim solution, the presented approach turned out to be low
complex, yet very �exible and fast. These overly positive
results turned our interim solution into a proposal for realiz-
ing inter-component communication in future microkernel-
based operating systems.

1. INTRODUCTION
A typical software stack running on a today's machine is
composed of a large number of processes that communicate
with each other by using operating-system (OS) mechanisms
such as �les, shared memory, or sockets. Among these mech-
anisms, message-based inter-process communication allows
for �ne-grained interaction between processes, whereas the
most popular granularity of a message is a procedure call.
There exist numerous tools for translating high-level de�ni-
tions of a procedural interface to stub code that performs
the actual communication using appropriate OS primitives.
The di�erent approaches for expressing high-level procedu-
ral interfaces (e. g., ONC RPC [10]) converged to de facto
standard interface description languages (IDL), which unify
the speci�cation of components in distributed environments.
An IDL compiler translates a generic IDL interface speci�-
cation to stub code that implements the actual communica-
tion code for the client and the server side of the interface.
Whereas the IDL code is platform independent, the gener-
ated stub code may be created for any desired programming
language and optimized for a particular operating system or
machine type.

Given the success of IDL in large distributed systems, the
choice for IDL as abstraction for inter-process communica-
tion in a microkernel-based operating system seems natural.
Hence, in current multi-server OSes, IDL is used as com-
munication abstraction by applications and by system com-
ponents. These components include even the lowest-level
parts of the operating system such as the memory man-

ager, process manager, and low-level device drivers. Such
low-level components, however, live under very speci�c con-
ditions and constraints. All components are implemented in
a small set of implementation languages (e. g., C and C++)
and are executed on one and the same machine. Language
independence and machine-type (e. g., byte order) indepen-
dence of interface descriptions, two major features of IDL,
are not required. In general, IDL supports the use of com-
plex data structures with nested indirections as RPC argu-
ments. For the low-level components of our system however,
we observed that such complex messages are not used at all
because such data structures require dynamic memory allo-
cation in the stub code. These allocations are unsuitable for
low-level system components that require complete control
over their memory usage and need to avoid memory leaks
under any circumstances.

Given these conditions, the advantage of using an IDL com-
piler over hand-written communication code comes down to
two arguments: convenience and performance. By using
IDL, the system developer spares himself the boring, yet
bug-prone, development of communication code and custom
communication protocols. The performance argument is
most notably valid for microkernel-based systems for which
low latency of RPC communication is considered as cru-
cial [6]. The IDL compiler can exploit the a-priori knowledge
of the message layouts and the speci�c machine type to op-
timize the stub code, for example by using native assembly
instructions or by considering data alignment in memory.

On the other hand, the �rst-grade design criteria for a mi-
crokernel as well as for low-level components is minimizing
complexity and thereby maximizing the robustness of the
system as a whole. Based on examples, Section 2 illus-
trates that an IDL compiler and the generated stub code
signi�cantly contribute to the overall tool-chain and system
complexity.

In this paper, we strive for eliminating the need for an
IDL compiler for low-level components in microkernel-based
OSes. We introduce the usage of C++ streams as abstrac-
tion for inter-process communication in Sections 3 and 4.
This technique leads to extremely simple stub codes that
are easily maintainable by hand and that can be statically
type checked by the C++ compiler. In Section 5, we discuss
the feasibility of the solution by comparing our custom RPC
framework to the classical IDL approach with regard to per-

1

formance, �exibility, utility value, manageability, stub-code
complexity, and tool complexity. We base our argumenta-
tion on an experiment for which we created a basic multi-
server OS [5] including a graphical user interface [11] and
interactive applications that we implemented without em-
ploying an IDL compiler. As a case study, we compare our
gathered experiences against those with our prior existing
multi-server OS called DROPS [8], which is based on classic
IDL-based RPC communication.

2. COMPLEXITY ON ACCOUNT OF IDL
In Section 1, we claimed that the IDL compiler and the
generated stub code make up considerable parts of the tool-
chain and security-critical system complexity. To substan-
tiate this claim, let us revisit the source-code complexity of
our custom DROPS multi-server OS and put that in relation
to the complexity caused on account of IDL. In the follow-
ing, we use the number of source lines of code (SLOC) [3]
as indicator for source-code complexity. Note that using
SLOC as complexity measure must be taken with a grain of
salt and there exist more expressive metrics [12]. However,
SLOC is a very intuitive measure and at least illustrates the
magnitude of source code complexity. Furthermore, SLOC
expresses well the amount of code (the size of the hiding
place for potential bugs) a human being has to face on a
manual audit.

We base our inspection on a simple OS setup approximat-
ing a typical trusted computing base when running security-
sensitive applications on top of DROPS. Without taking the
microkernel into account, the setup consists of 8 compo-
nents: a process for starting the other initial components, a
log output service, a naming service, the memory manager,
the process manager, the program loader, an event service,
and a simple GUI server. The human-written source code
(mainly written in C) including the ported uclibc C library
with 9,000 SLOC and ported input drivers with 7,000 SLOC
stack up to circa 50,000 SLOC.

The communication between the components involves 14
IDL interfaces with a total of 139 di�erent procedures.
From these speci�cations, our custom IDL compiler gener-
ates 32,000 SLOC of communication stub code. Therefore,
the amount of generated code makes up to 40% of the over-
all source code to be ultimately trusted by security-sensitive
applications running on top. This relation places emphasis
on the crucial role of correct stub code for system security.
The correctness of this code, however, is hard and costly to
validate.

One could argue that IDL-compiler-generated stub code is
just an intermediate format likewise to the intermediate for-
mats that are generated by gcc when translating C-source
code to binary code. When talking about SLOC, we usu-
ally do not refer to code expressed in such an intermediate
format but to human-written code only. This argumenta-
tion e�ectively disregards the generated stub code from our
complexity analysis. Then however, the complexity of the
used code-generation tool comes into question.

DICE [1] is our feature-rich and mature implementation of
an IDL compiler that supports multiple back-ends (e. g., L4
version 2, L4 version 4, and socket communication via TCP),

multiple platforms (IA32, ARM, AMD64), CORBA types,
the inclusion of C headers, generating dependency informa-
tion, and a rich set of additional con�guration options. Its
development was driven by the evolving needs of DROPS. As
features generally had been added on user requests, almost
all of DICE's functionality is actually used. In its current
stage, the C++ implementation of DICE comprises circa
48,000 SLOC. For our example scenario, the complexity of
the stub code generator is in the same order of magnitude
as the actual human-written trusted operating-system code.

As illustrated in [13], faulty compilers and tools may in-
troduce critical security vulnerabilities into the generated
binary code. Thus, tool-chain complexity is critical. If com-
paring DICE to the overall tool-chain including the GNU
C++ compiler and binutils, DICE's complexity appears neg-
ligible at the �rst glance but there are two characteristic dif-
ferences between DICE and the standard parts of the tool
chain. Firstly, when using standard tools such as gcc, ld,
and as for compiling human-written code, these tools cannot
be eliminated and are a mandatory part of the tool chain
anyway. Secondly, those tools are developed and maintained
by a huge community and are heavily used by a consider-
able part of the earth population each day. By our personal
experience, this extremely high exposure leads to an over-
all low bug rate and high con�dence. On the other hand,
our custom IDL compiler is developed and maintained by
only one person and is exposed to only a low (less than 50)
number of regular users.

Regardless of how we consider the complexity overhead im-
posed by the use of IDL, the stub complexity or the e�ect
on the tool-chain complexity, the overhead is signi�cant. In
the next section, we present our approach to minimize this
overhead.

3. DYNAMIC RPC MARSHALLING
We use C++ as implementation language, which facilitates
the use of streams as concept for handling input and output
rather than relying on C library functions such as scanf and
printf. Streams are objects that provide insertion (<<)
and extraction (>>) operators. The basic mode of opera-
tion of our RPC framework is based on C++ streams and
best illustrated by examples: Sending a one-way message
with two arguments to a server involves the two steps of
transforming the arguments to an array of bytes (message)
and invoking the OS-communication mechanism with the
message as argument. The step of creating the message
from a set of arguments is called marshalling.

Ipc_ostream sender(dst, &snd_buf);
sender << a << b << IPC_SEND;

The object sender is an output stream that is initialized
with a communication endpoint (dst) and a message bu�er
(snd_buf). Depending on the underlying OS mechanism,
dst may be a thread ID, a port number, the name of a
pipe, a capability, or any other communication address. For
sending the message, we sequentially insert both arguments
into the stream to transform the arguments to a message
(�rst step) and �nally invoke the actual OS-communication

2

result = f1_call(dst, args...)

OP
send buffer receive buffer

OP

f1_impl(args...)
{
 ...
 return result;
}

Arguments

Result
send buffer

Result
receive buffer

1
f2_impl()

3
f3_impl()

?

2

4

5

6
7

Client Server
Arguments

8

Figure 1: Illustration of an RPC call. (1) Client marshals ar-
guments to form a message. The �rst part of the
message is a function opcode. (2) Client sends
message via the kernel to the server and blocks
for the result. (3) Server dispatches request ac-
cording to the opcode stored in the message. (4)
Server unmarshalls function arguments, (5) ex-
ecutes function, and (6) marshals the produced
results. (7) Server sends result message to the
client. (8) Client unmarshals results.

mechanism by inserting the special object IPC_SEND (second
step).

The counterpart on the receiver side looks similar:

int a, b;
Ipc_istream receiver(&rcv_buf);
receiver >> IPC_WAIT >> a >> b;

For creating the receiver input stream object, we specify
a receive message bu�er as argument that can hold one in-
coming message. By extracting the special object IPC_WAIT
from the receiver, we block for a new message to be stored
into rcv_buf. After returning from the blocking receive op-
eration, we use the extraction operator to unmarshal the
message argument by argument.

3.1 Remote Procedure Calls
We expanded this simple mechanism to support full RPC
semantics. A complete RPC includes the steps as displayed
in Figure 1. For performing RPC, we introduce the stream
classes Ipc_client and Ipc_server, which act as input
streams as well as output streams. In the following exam-
ple, a client performs a call with two arguments and receives
one result value:

Ipc_client client(dst, &snd_buf, &rcv_buf);
int result;
client << OPCODE_FUNC1 << 1 << 2

<< IPC_CALL >> result;

The �rst argument is a constant that references one among
many server functions. It is followed by the actual server-
function arguments. All arguments are marshalled into the
snd_buf. When inserting the special object IPC_CALL into
the client stream, the client blocks for the result of the
RPC. After receiving the result message in rcv_buf, the
RPC results can be sequentially unmarshalled via the ex-
traction operator. Note that rcv_buf and snd_buf may use
the same backing store as both bu�ers are used interleaved.

The corresponding server-dispatch function looks as follows:

Ipc_server server(&snd_buf, &rcv_buf);
while (1) {
int opcode;
server >> IPC_REPLY_WAIT >> opcode;
switch (opcode) {
case OPCODE_FUNC1:
{
int a, b;
server >> a >> b;
server << func1(a, b);
break;

}
..

}
}

The special object IPC_REPLY_WAIT replies to the request of
the previous server-loop iteration with the message stored in
snd_buf (ignored for the �rst iteration) and then waits for
an incoming RPC request to be received in rcv_buf. By con-
vention, the �rst message argument contains the opcode to
identify the server function to handle the request. After ex-
tracting the opcode from the server stream, we branch into
a server-function-speci�c wrapper that reads the function
arguments, calls the actual server function, and inserts the
function result into the server stream. The result message
is to be delivered at the beginning of the next server-loop
iteration. The two-stage argument-message parsing (opcode
to select server function, reading server-function arguments)
is simply done by subsequent extraction operations.

3.2 Marshalling
The previous examples used only integer arguments to com-
pose messages. Of course, the marshalling is not limited to
that particular type but allows for the insertion of any self-
contained (not having pointers to other objects), �xed-sized
object type. The following template does the trick:

template <typename T>
Ipc_client &operator << (T value) {

/* check for buffer overrun */
assert(write_offset + sizeof(T)

< sndbuf_size);

/* write value of type T into buffer */
*(T *)(&sndbuf[write_offset]) = value;

/* increment write offset */
write_offset += sizeof(T);

return *this;
}

The C++ compiler automatically instantiates the template
for each type that is used for an argument to the insertion
operator. Furthermore, template specializations allow even
for the marshalling of non-self-contained object types such
as lists by implementing type-speci�c stream-operator se-
mantics. The unmarshalling via the extraction operator is
done in an analogous way.

Apart from �xed-size objects, typical RPCs contain variable-
sized arguments, most prominently character strings. We
support such arguments by providing a specialized insertion

3

operator for the type Buffer. Such a bu�er consists of an
address and a size and thus, describes an arbitrary memory
region. The insertion operator for the Buffer object simply
copies the corresponding memory into the message bu�er.
For convenience, a Buffer object can be constructed with
the address of a null-terminated string as argument where
the bu�er size gets determined via strlen:

client << OPCODE_WRITE
<< Buffer("very convenient")
<< IPC_CALL;

When extracting a Buffer object from a received message,
the Buffer object references the corresponding range within
the received message.

The same methodology can be applied for con�guring RPCs.
If the underlying communication mechanism provides sup-
port for communication timeouts, such a timeout can be
con�gured by inserting a Timeout object that gets handled
by a specialized insertion operator performing the required
con�guration. On microkernel-based systems, IPC messages
are further used to delegate resources (e. g., memory pages)
and rights between processes. The handling of such non-
plain-data messages is another use case that can be handled
by specialized stream operators.

4. IMPLEMENTATION
Our custom experimental OS is targeted at running on top
of a microkernel. Therefore, we conducted our �rst experi-
ments regarding our RPC framework on the L4/Fiasco ker-
nel that provides the IPC interface of L4 version 2. This
interface features two variants of synchronous IPC: Short
IPC transfers two 32bit words directly via CPU registers
whereas long IPC copies the (potentially large) message
payload from a send bu�er stored in memory to the receiver
of the message. Because short IPC is much faster than long
IPC, our framework distinguishes at runtime both cases for
IPC calls and IPC reply messages.

Apart from transmitting plain data messages, the L4 IPC
interface is used for delegating memory mappings to let pro-
cesses establish shared memory. Unfortunately, the layout
of L4-version-2 IPC messages that include �expage map-
pings unreasonably complicated the implementation into our
framework. Concluding from the observation that memory-
mapping IPCs are only used in the fashion of sending exactly
one mapping via a short IPC, we decided to handle this spe-
cial case separately and keep the general IPC marshalling
code clean.

In the course of the work on the RPC interfaces for our ex-
perimental multi-server OS, apart from the mentioned �ex-
page support, we have not encountered RPC semantics that
are di�cult to realize with dynamic RPC marshalling. We
take this as an indicator for the functional feasibility of our
approach regarding low-level system components.

5. EVALUATION
To evaluate our dynamic-marshalling approach, we compare
our implementation against the DICE IDL compiler as men-

tioned in Section 2. In the following, we analyze perfor-
mance, utility value, and overall manageability as the dis-
tinctive properties of both solutions.

5.1 Performance
Since the rise of second-generation microkernels with L4 [9]
as the prime example, the crucial role of high-performance
IPC for achieving good overall system performance is re-
garded as a fundamental realization. Hence, kernels of the
L4 microkernel family are extremely optimized to minimize
the costs of IPC operations. To be in the line of the opti-
mized IPC performance of the kernel, IDL compilers became
increasingly more powerful in generating speed-optimized
stub code. As a particular case, the transition from the
Flick [4] IDL compiler to the more sophisticated IDL4 IDL
compiler is described in [7]. The DICE IDL compiler was
created as a �exible and speed-optimizing counterpart of
IDL4 for the L4/Fiasco microkernel.

Our presumption in comparing the dynamic RPC mar-
shalling approach to DICE-generated stub code was not
optimistic because, in contrast to DICE, dynamic mar-
shalling cannot take a-priori knowledge about the message
bu�er layout into account and thus, cannot perform op-
timizations to the same degree. Furthermore, we were
uncertain about the actual costs of the C++ stream opera-
tors. When using dynamic marshalling for our research OS
experiment, we were willing to trade IPC-performance for
the prospect of having a practical and low-complex RPC
solution immediately available. Still, the magnitude of per-
formance degradation is of interest to judge if the advantage
of the simplicity of our approach outweighs its performance
penalty.

To estimate the performance in a realistic setting, we picked
�ve characteristic RPC function signatures from our existing
interfaces. Each function provides one integer return value,
which is typically used to indicate the success or failure of
the function call.

f1() has no arguments. Such a signature is typically used
for sending noti�cation messages. Because of the use of
such messages for interrupt noti�cations at high rates,
L4 provides an optimization for such short messages
and transfers the message directly via general-purpose
CPU registers.

f2(int) has a similar usage pattern as f1 but is used
when more contextual information must be transmit-
ted. It also pro�ts from L4's short-message optimiza-
tion. Other use cases are close calls for sessions or
�les where the argument is a session or �le ID.

f3(3 x [out] int *) returns three integer values and is
used to request properties of a server. Such requests
usually happen at a low rate.

f4(5 x int) is a typical function signature provided by
a service. For example, a GUI service provides a
refresh call taking a window ID, a (x,y) position,

4

and a (width, height) size as arguments. Another
example is a copy function of a memory management
service, which takes references to memory ranges (ad-
dresses, o�sets) and �ags as arguments.

f5(8 x int) speci�es eight integer arguments to a function
of a stateless server. For such servers, all contextual
information must be provided with each call. For ex-
ample, for a graphics operation, all drawing attributes
and coordinates must be provided.

f6(char *) transmits a variable-sized, null-terminated
string. At compile time, only a maximum string
length is known. The stub code must determine the
actual string length at runtime. Such an argument
is usually combined with a couple of integer argu-
ments but we test it separately to get a clearer pro�le.
For our test case, we transfer a 36 character string
representing a typical pathname or a script command.

For this set of functions, we created both IDL-based com-
munication stubs and hand-written stub-code using dynamic
marshalling. We performed our �rst tests on a 1.70GHz In-
tel P4 Celeron Willamette CPU with a cache of 128KB and
256MB of memory.

Function Mechanism Stub RPC

f1() IDL stub 678 3797
Dyn RPC 1130 4270

f2(int) IDL stub 676 3796
Dyn RPC 1154 4293

f3(3 x [out] int *) IDL stub 784 5897
Dyn RPC 1622 6407

f4(5 x int) IDL stub 766 5947
Dyn RPC 1785 6425

f5(8 x int) IDL stub 809 5808
Dyn RPC 2108 6763

f6(char *string) IDL stub 1232 6101
Dyn RPC 2072 6756

Table 1: Number of clock cycles required to perform RPC calls
of the test functions via DICE-generated stub codes on
the one hand and dynamic marshalling on the other
hand. The Stub values correspond to the clock cycles
spent in the stub code path. The RPC values are the
overall costs including the kernel IPC code path.

Table 1 compares the performance of dynamic marshalling
against DICE-generated stub code. Depending on the sig-
nature of the function, the stub code path of dynamic mar-
shalling is 20%-100% slower than the corresponding code
as generated by DICE. The relative di�erences of the over-
all costs including the required IPC operation of the kernel
however, are much smaller because the overall RPC perfor-
mance is dominated by the IPC operation of the L4/Fiasco
microkernel. Because client and server reside in di�erent ad-
dress spaces, each RPC involves two costly context switches.
Still, for this particular kernel, dynamic marshalling leads to
a performance degradation of more than 10%. For other ker-
nel implementations that are even more optimized for IPC
performance, the negative impact of dynamic marshalling

on the overall performance may be even higher. The infe-
rior performance of dynamic marshalling is primarily caused
by the stream operations that are treated by gcc as function
calls. For example, for the stub function

int f4(int a, int b, int c, int d, int e)
{
return ipc_client << 4 << a << b << c << d

<< e << IPC_CALL;
}

the gcc compiler generates the following assembly code:

push %ebp
mov %esp,%ebp
sub $0x8,%esp
movl $0x4,0x4(%esp)
movl $0xbb6020,(%esp)
call insert_int
mov %eax,%edx
mov 0x8(%ebp),%eax
mov %eax,0x4(%esp)
mov %edx,(%esp)
call insert_int
...
mov %eax,%edx
mov 0x18(%ebp),%eax
mov %eax,0x4(%esp)
mov %edx,(%esp)
call insert_IPC_CALL
movl $0x0,0x4(%esp)
mov %eax,(%esp)
call int_operator
mov %eax,(%esp)
call b99084
leave
ret

Each argument involves a costly call operation. Further-
more, stack operations are needed to retrieve the f4 argu-
ments a to e and push their values to the stack for calling
the insertion operator.

As hinted by the assembly code, the performance of the stub
code drastically changes when enabling the inlining opti-
mizations of the compiler. With inlining enabled, the com-
plete marshalling code for a call of f4 with the arguments
1, 2, 3, 4, 5 gets translated to the following code:

mov write_offset,%edx
mov message_buffer,%edi
movl $0x4,(%edx,%edi,1)
mov write_offset,%ebx
add $0x4,%ebx
mov %ebx,write_offset
movl $0x1,(%ebx,%edi,1)
mov write_offset,%ecx
add $0x4,%ecx
mov %ecx,write_offset
movl $0x2,(%ecx,%edi,1)
mov write_offset,%edx
add $0x4,%edx
mov %edx,write_offset
movl $0x3,(%edx,%edi,1)
mov write_offset,%ebx
mov $0x1,%edx

5

add $0x4,%ebx
mov %ebx,write_offset
movl $0x4,(%ebx,%edi,1)
mov write_offset,%ecx
add $0x4,%ecx
mov %ecx,write_offset
movl $0x5,(%ecx,%edi,1)
addl $0x4,write_offset
mov %edx,0x4(%esp)
movl $0xbb5020,(%esp)
call insert_IPC_CALL

The RPC opcode (4) and all arguments get directly written
into the message bu�er and for each step, the write o�set
gets incremented by 4 (sizeof(int)). Thus, for regular
RPCs with �xed arguments speci�ed in the source code, the
inlining of stream operations as performed by the C++ com-
piler translates dynamic marshalling C++ code e�ectively
to static marshalling at the assembly level.

Function Mechanism Stub RPC

f1() IDL stub 542 3486
Dyn RPC 585 3387

f2(int) IDL stub 599 3514
Dyn RPC 627 3428

f3(3 x [out] int *) IDL stub 584 5454
Dyn RPC 559 4898

f4(5 x int) IDL stub 636 5491
Dyn RPC 771 5086

f5(8 x int) IDL stub 624 5236
Dyn RPC 738 5095

f6(char *string) IDL stub 967 5929
Dyn RPC 982 5301

Table 2: Performance comparison of dynamic marshalling
against DICE-generated stub code when compiled with
the inlining optimizations (-O3) of gcc-3.3.

Table 2 shows the performance of the test functions with en-
abled inlining optimizations. Both the dynamic marshalling
as well as the generated stub code signi�cantly pro�t from
these optimizations. A surprising observation is that the
dynamic marshalling code gains so much from function in-
lining that it outperforms DICE-generated code in some
cases. The relatively rigid code as generated by DICE leaves
less potential for automated compiler optimization than the
high-level C++ stream code. Another interesting observa-
tion is that the performance of the IPC code path in the
kernel seems to depend on the user-level stub code. Both
the dynamic marshalling code and the DICE-generated stub
code use the same IPC kernel operations with the same ar-
guments. For example, for function f3, the execution time
of the dynamic marshalling code is only 25 cycles faster than
the corresponding DICE-generated code. The overall perfor-
mance di�erence including the IPC kernel operations, how-
ever, are 556 cycles.

Table 3 examines the costs for the individual phases of the
RPC call of f3. The performance gain of the dynamic mar-
shalling code is mainly attributed to the performance dif-
ference of the IPC reply kernel operation. Since the ker-
nel operations are issued with the same arguments, these
di�erences must originate from indirect e�ects such as dif-

f3(3 x [out] int *) IDL stubs Dyn RPC

Client marshal arguments 92 117
IPC request (client → server) 1840 1781
Server unmarshal arguments 213 186
Server marshal results 96 120
IPC reply (server → client) 3030 2558
Client unmarshal results 183 136

(Un-)Marshalling costs 584 559
Overall costs 5454 4898

Table 3: Decomposition of the RPC costs for function f3.

ferent cache usage patterns of both code paths 1. These
e�ects make the signi�cance of such microbenchmarks for
predicting system performance questionable. This becomes
even more evident when conducting the same benchmarks
on platforms with di�erent microarchitectures.

Table 4 compares the performance of the simplest of all
test functions f1 on four di�erent microarchitectures. Tak-
ing the client-marshal-args code path as a prime exam-
ple, the dynamic marshalling code path performs worse
(P4 Willamette), equal (P4 Prescott), or better (AMD
Opteron) compared to corresponding DICE-generated stub
code. Another interesting observation is that the simple
client-unmarshal-args code path of the DICE-generated
stub executed on the P4 requires more than 300 clock cycles
more than the dynamic marshalling equivalent. By closely
examining both corresponding code paths and successively
moving our measurement sensor code (based on rdtsc 2),
it seems that, under certain circumstances, a single ret in-
struction after leaving the kernel can eat 300 cycles. In fact,
we observed such a 300-cycles penalty for other functions of
both dynamic marshalling and DICE-generated stub code
on the P4.

With regard to comparing both RPC approaches on the ex-
amined test platforms, the di�erences of DICE-generated
stubs and dynamic marshalling have only a marginal e�ect
on the overall RPC performance. For some test functions,
we even observed a performance gain in using dynamic mar-
shalling compared with DICE-generated code.

5.2 Utility value
Apart from achieving fast communication code, the usage of
IDL compilers is driven by a convenience bene�t for its users,
who are relieved from writing communication code by hand.
In contrast, our dynamic marshalling approach suggests to
involve more manual work. For example, the programmer

1 We prepended one additional execution of the RPC code
path to the front of the benchmark loop to perform the
actual measurement with warm caches. We suspected that
the cache usage patterns of both stub-code variants con�ict
di�erently with the cache lines used by the kernel. However,
by counting cache misses using performance counters, we
observed that in neither case, cache misses happened.
2 To estimate to systematic error caused by the rdtsc-based
benchmarking code itself, we repeated the benchmark on the
P4 with only the two outer measurement points enclosing
the complete RPC call and excluded the �ve inner measure-
ment points. The di�erence to the original measurement lies
in the range of a dozen clock cycles indicating that the rdtsc
instructions do not distort the measurements too much.

6

CPU IDL Dyn
stubs RPC

Client marshal args P4(W) 89 117
P4(P) 99 99
AMD 63 40
Core 153 148

IPC request P4(W) 1368 1284
P4(P) 1603 1507
AMD 568 539
Core 1083 1023

Server unmarshal args P4(W) 171 208
P4(P) 111 104
AMD 57 143
Core 217 226

Server marshal results P4(W) 96 128
P4(P) 167 170
AMD 52 43
Core 120 152

IPC reply P4(W) 1576 1518
P4(P) 2436 2245
AMD 617 591
Core 1208 1166

Client unmarshal results P4(W) 186 132
P4(P) 463 100
AMD 140 73
Core 258 196

(Un-)Marshalling costs P4(W) 542 585
P4(P) 840 473
AMD 312 299
Core 748 722

Overall costs P4(W) 3486 3387
P4(P) 4879 4225
AMD 1497 1429
Core 3039 2911

Table 4: RPC performance comparison of the function f1 for
the microarchitectures P4(W) (Celeron Willamette at
1,703 MHz), P4(P) (Celeron D Prescott at 2,933
MHz), AMD (Opteron at 1,995 MHz), Core (Core 2
Merom at 2663 MHz).

has to manage the allocation of message bu�ers, the stub
code, and the server-loop manually. On the other hand, we
experienced that RPC interfaces are, in contrast to the inner
life of components, rather static. To substantiate this claim,
we analyzed the source-code revisions of the �les referring
to the DROPS-based scenario mentioned in Section 2.

During the time frame of four years (2003-03-06 to 2007-03-
06), the source code underwent 1350 revisions with overall
2838 �le changes. From these revisions, only 53 revisions
semantically changed the RPC interfaces by modifying IDL
�les. Of course, the number of source-code revisions does not
provide an accurate measure of engineering costs but we can
take these values at least as a hint. Assuming such a correla-
tion, the ratio of RPC-speci�c revisions to implementation-
speci�c revisions clearly supports our claim. If we had used
dynamic marshalling involving manual adaptation of com-
munication code, the amount of manual work would have
been negligible compared to the non-RPC-related develop-
ment work. Even more surprising, the mere usage of the
IDL compiler implied substantial collateral costs. With 252

�le changes in 53 revisions, circa 9% of overall �le changes
fall under the category �Adaption to DICE's changes� and
were needed because DICE itself is a moving target. With
the progress of the project and with the growing demands of
the used RPC interfaces, DICE incorporated new features,
changed the set of supported IDL elements, and even re-
vised semantics of IDL keywords. The ratio of revisions to
�le changes indicates that often, changed behaviour of DICE
implicated modi�cations in a lot of di�erent source �les.

Another observation is that the generated client stubs are
rarely used directly. For the majority of services, there exist
client libraries, which wrap the generated stub code and, in
turn, provide more convenient client APIs that completely
hide communication. Consequently, even in the presence of
the IDL compiler, a changing RPC interface requires manual
adaptation of the client-side support code.

Our experiences with dynamic marshalling are quite young,
and were gathered during only one year. Yet, we can report
that the required e�ort in maintaining the communication
code was so low that we have not developed a desire for
tool support. As the dynamic marshalling technique does
not employ an IDL compiler that checks the consistency of
types and opcodes between the client and server stub codes
at IDL-compile time, we maintained type safety by declar-
ing the opcodes and function prototypes of each interface
in a dedicated header �le that we included from both the
client and the server stub-code implementations. Therefore,
the C++ compiler checks the adherence of the stub code
on both sides to the interface declaration at compile time.
The primitives described in Section 3 turned out to be very
simple, yet �exible and convenient. As an illustrative exam-
ple, an RPC with an argc-argv-like interface can trivially
be constructed via these primitives:

sender << argc;
for (int i = 0; i < argc; i++)
sender << Buffer(argv[i]);

sender << IPC_SEND;

In contrast, an IDL compiler would require explicit support
of such an interface as a special feature. As a (subjective)
convenience aspect, using the implementation language that
the programmer is pro�cient with also for working on RPC
interfaces is an advantage because the programmer can fully
exploit its well-understood implementation language instead
of switching his mind back and forth between implementa-
tion language and IDL with a lot of special keywords to
remember. Designing an RPC interface and creating the
corresponding client library are consolidated into one task.

5.3 Manageability
Besides the utility value of the RPC solutions for their users,
we also identi�ed the manageability of the solutions as a
distinctive property directly related to engineering costs.
With manageability, we refer to the complexity of the so-
lution, �exibility with regard to providing feature support,
and portability.

In Section 2, we motivated our dynamic RPC marshalling
approach with the goal of avoiding the tremendous complex-

7

ity of the IDL compiler (DICE comprises circa 48,000 C++
SLOC, Magpie [2] comprises circa 42,000 Python SLOC) and
the generated stub code. In contrast, dynamic marshalling
does not require custom tool support and therefore, elimi-
nates 48,000 SLOC from our tool chain. Our RPC frame-
work providing the dynamic marshalling functionality is im-
plemented in less than 500 SLOC. The costs of maintaining
such a simple solution are orders of magnitude lower than
the costs of maintaining a complex IDL compiler.

For the presented scenario based on our existing software
stack, the 32,000 lines of generated stub code for 14 IDL
interfaces with 139 remote procedures make up 40% of our
overall source code. Our newly implemented experimental
multi-server OS provides similar basic functionality such as
loading of ELF binaries, memory management, a basic GUI,
and some simple interactive demo applications. Because of
its more simplistic nature, its 16 RPC interfaces feature only
42 remote procedures, which we realized with our dynamic
marshalling approach. Out of the 17,000 lines of human-
written code, the RPC interfaces make up less than 10%
(1,400 SLOC). Although both implementations are not fully
comparable with regard to the implemented functionality,
the observed ratios of RPC-related code to non-RPC-related
code strongly indicate that dynamic marshalling yields to
signi�cantly reduced stub-code complexity.

The DICE IDL compiler provides a multitude of features to
support the mechanisms of the underlying kernel. For exam-
ple, DICE provides support for timeouts, can transmit indi-
rect strings, and supports the mapping of memory regions.
As mentioned in Section 4, the message-descriptor format
of the L4-version-2 kernel API imposed di�culties in sup-
porting some kernel features such as �expage mappings into
our dynamic marshalling framework. Instead of integrating
these (rarely used) features into the generic framework, we
implemented them as special cases outside the framework.
However, in a second experiment, another engineer of our
group re-evaluated the dynamic-marshalling approach by
creating an alternative framework. His implementation pro-
vides support for all L4-version-2 kernel features, yet does
not exceed a complexity of 500 SLOC. Given a talented de-
veloper, the dynamic marshalling approach does not seem
to lag behind an IDL compiler with regard to supported
features.

DICE supports multiple back ends enabling one IDL inter-
face to be used to generate communication stub code for
both L4 IPC and socket communication. The support of
those multiple platforms can greatly shorten development
cycles when �rstly implementing functionality on Linux us-
ing DICE's socket back-end and later porting the result to
the L4 platform. The low complexity of our dynamic mar-
shalling framework, however, suggests that it can be as eas-
ily ported or re-implemented for di�erent platforms. In fact,
porting the framework from L4 IPC to socket communica-
tion involved only two evenings of work.

6. CONCLUSIONS
Employing IDLs is the time-tested solution for realizing
RPC communication in distributed systems up to large-scale
heterogeneous networks. IDL-based frameworks such as
CORBA enable network-transparent inter-component com-

munication independent from implementation languages,
OS platforms, and computer hardware.

In microkernel-based OSs as a �avour of distributed sys-
tems, IDL compilers do a respectable job of making low-
level microkernel mechanisms accessible to user-land devel-
opers while preserving optimized IPC performance of mod-
ern microkernels. The major strengths of an IDL as being
a platform and implementation-language abstraction, how-
ever, remain unused when building low-level components for
a microkernel-based OS. Furthermore, this speci�c applica-
tion domain on the one hand follows the fundamental princi-
ple of enhancing robustness and security by minimizing the
complexity of critical software. On the other hand, the usage
of IDL contributes substantially to the critical system com-
plexity. In our work, we elaborated on dynamic marshalling
as an alternative approach to implement RPC communi-
cation between low-level components of microkernel-based
OSes. Assuming to pay a performance penalty when com-
pared to IDL-compiled communication code, we originally
intended to use dynamic marshalling just as a pragmatic in-
terim solution during the experiments with our research OS
prototype to enable us to postpone the costly development
or adaption of an IDL compiler for our platform. To our
delight, we observed that the e�ciency of our approach is
in fact on par with communication stubs as generated by
the DICE IDL compiler. We also experienced that our sim-
ple dynamic-marshalling framework provides us with all the
�exibility that we needed, avoids complex code-generation
magic, and is still convenient to use. The biggest advan-
tage, however, is the signi�cant complexity reduction of the
communication-stub code and the tool chain, and thereby
our increased con�dence in the overall robustness of our soft-
ware.

7. ACKNOWLEDGEMENTS
I want to thank Christian Helmuth for constructing our ex-
perimental research OS together with me and Alexander
Warg for our valuable discussions and for re-evaluating the
approach by the means of his alternative implementation.
Furthermore, I am grateful to Ronald Aigner for sharing his
expertise in IDL-based communication, for open discussions,
and for validating the measurements. The �nal version of
the paper was improved thanks to the very helpful advice
from the reviewers of the ACM OSR Special Issue on Secure
Small-Kernel Systems. I especially thank Michael Hohmuth
for setting up the special issue and for his greatly appreci-
ated suggestions.

This work was conducted as part of the ROBIN project
funded by the European Union.

8. REFERENCES
[1] DICE website. URL:

http://os.inf.tu-dresden.de/dice.

[2] Magpie website. URL: http://www.ertos.nicta.com.
au/software/kenge/magpie/latest/.

[3] SLOCCount website. URL:
http://www.dwheeler.com/sloccount/.

[4] E. Eide, K. Frei, B. Ford, J. Lepreau, and
G. Lindstrom. Flick: A �exible, optimizing idl
compiler. In ACM SIGPLAN '97 (PLDI), Las Vegas,

8

http://os.inf.tu-dresden.de/dice
http://www.ertos.nicta.com.au/software/kenge/magpie/latest/
http://www.ertos.nicta.com.au/software/kenge/magpie/latest/
http://www.dwheeler.com/sloccount/

NV, 1997.

[5] N. Feske and C. Helmuth. Design of the Bastei OS
architecture. Technical Report
TUD-FI06-07-Dezember-2006, TU Dresden, 2006.

[6] A. Ge�aut, T. Jaeger, Y. Park, J. Liedtke,
K. Elphinstone, V. Uhlig, J. Tidswell, L. Deller, and
L. Reuther. The SawMill multiserver approach. In
ACM SIGOPS European Workshop 9/00, 2000.

[7] A. Haeberlen, J. Liedtke, Y. Park, L. Reuther, and
V. Uhlig. Stub-code performance is becoming
important. In Proceedings of the First Workshop on
Industrial Experiences with Systems Software
(WIESS), San Diego, USA, 2000.

[8] H. Härtig, R. Baumgartl, M. Borriss, C.-J. Hamann,
M. Hohmuth, F. Mehnert, L. Reuther, S. Schönberg,
and J. Wolter. DROPS: OS support for distributed
multimedia applications. In Proceedings of the Eighth
ACM SIGOPS European Workshop, Sintra, Portugal,
Sept. 1998.

[9] J. Liedtke. On µ-kernel construction. In Proceedings of
the 15th ACM Symposium on Operating System
Principles (SOSP), pages 237�250, Copper Mountain
Resort, CO, Dec. 1995.

[10] S. Microsystems. ONC+ Developer's Guide. Sun
Microsystems, 1995. Latest version available from:
http://docs.sun.com/app/docs/doc/802-1997.

[11] Norman Feske and Christian Helmuth. A Nitpicker's
guide to a minimal-complexity secure GUI. In
Proceedings of the 21st Annual Computer Security
Applications Conference (ACSAC), 2005.

[12] M. Shepperd and D. Ince. Derivation and validation of
software metrics. Oxford University Press, Inc., New
York, NY, USA, 1993.

[13] K. Thompson. Re�ections on trusting trust. Commun.
ACM, 27(8):761�763, 1984.

9

http://docs.sun.com/app/docs/doc/802-1997

	1 Introduction
	2 Complexity on account of IDL
	3 Dynamic RPC marshalling
	3.1 Remote Procedure Calls
	3.2 Marshalling

	4 Implementation
	5 Evaluation
	5.1 Performance
	5.2 Utility value
	5.3 Manageability

	6 Conclusions
	7 Acknowledgements
	8 References

